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Abstract 
A great deal of academic research, particularly in the social sciences, makes an implicit assump-
tion that the processes being investigated are largely decomposable, meaning that the effects of 
individual variables identified in one context are likely to be observed in other contexts as well. 
Many of the statistical tools employed in analyzing social science data, such as regression and 
structural equation modeling, implicitly depend on such decomposability. A companion paper 
(Gill, 2008) proposes that many informing system situations may actually exist on rugged fitness 
landscapes for which the decomposability assumption is unrealistic. What this paper demonstrates 
is that applying statistical tests that assume decomposability on rugged landscapes may lead to 
statistical illusions of significance. These illusions, in turn, may convince the researcher that the 
decomposability assumption is valid, posing a serious threat to rigor by vastly overstating the sta-
tistical significances of observed relationships and by producing spurious significances. These 
significances, moreover, will not be readily detected by statistical tests that are commonly used to 
check the validity of the regression assumptions, such as the normality of error terms. This paper 
also explores the underlying reasons for such illusions and under what circumstances they can be 
avoided. 

Keywords: research methods, rigor, regression, rugged fitness landscapes, adaptation, gener-
alizability, informing sciences, complexity, chaos, decomposability. 

Introduction 
Suppose you had collected, or had been given, a set of data summarizing the characteristics of a 
great many informing systems, including information relating to the sender, the client, the deliv-
ery system, and the associated task for each system. Further suppose that you also had, for each 
system, one or more measures of system success, such as user satisfaction, degree of use, and 
contribution to profitability. Under such circumstances, it would be perfectly natural to want to 
explore the degree to which different informing system characteristics contribute to success. Fur-
thermore, if you had the proper training—such as a doctorate in MIS research—you would have 
at your disposal a variety of statistical tools, such as multiple regression, that could be employed 

to perform such analysis. 

The use of such tools involves an im-
plicit assumption. Specifically, they as-
sume that the underlying process that 
generated the data is decomposable. 
What this means in the case of a basic 
multiple regression model (i.e., a model 
with a single term for each independent 
variable—often called a first-order 
model) is that each variable in the model 
impacts the success measure in a man-
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ner that is independent of the values of the remaining variables. Where such decomposability is 
not predicted to be present, it is possible to incorporate specific interaction terms, thereby model-
ing the effects of combinations of more than one independent variable value. The potential num-
ber of such terms, however, is extraordinarily large for all but the most trivial set of characteris-
tics. Thus, decomposability tends to be assumed unless strong evidence to the contrary exists. 

In a companion paper (Gill, 2008), a conceptual argument is presented that the assumption of de-
composability is unlikely to be valid where the characteristics that drive the success of an inform-
ing system are being studied. Instead, it proposes that the relationship between system character-
istics and system success is likely to be better described as a rugged fitness landscape, a concep-
tual framework developed for evolutionary biology (Kauffman, 1993). In rugged landscapes, a 
particular characteristic’s impact on fitness cannot be determined without knowing the values of 
several more attributes. For example, an informing system that is useful, easy to use, and impacts 
a minor aspect of its user’s job may be greeted with enthusiasm, signifying a high value on the 
“user acceptance” fitness scale. On the other hand, if a nearly identical system impacts a signifi-
cant part of the user’s job, the user’s reaction could be resistance stemming from concerns about 
job loss. Moreover, the level of that resistance might further depend on the strength of various 
user motivational drives (e.g., Lawrence & Nohria, 2002). Users with a strong drive to bond 
might well place organizational needs on a par with their personal needs and thus welcome the 
system; users with a strong defensive drive—which manifests itself as the individual’s need to 
protect possessions and status—might go so far as resorting to sabotage. 

A compelling argument that can be advanced against the rugged fitness landscape model of the 
companion paper is the large body of research that has found significant relationships between 
system characteristics and fitness using statistical techniques that assume decomposability. In-
deed, one of the authors has advanced such models himself in the past (e.g., Gill, 1996).  Multiple 
regression, for example, provides an estimate of the significance for each model coefficient that it 
estimates. As researchers, we typically ignore any relationship that could happen by chance more 
than one time in twenty (p>=0.05). Frequently, our tests tell us that what we observe could be 
explained as the result of random variations in the data less than one time in a hundred (p<0.01). 
If the assumption of decomposability is invalid, how is it possible that significance tests so often 
reveal relationships that are so unlikely to have been caused by chance? 

In the present paper, we address the following question: Under what circumstances can a rugged 
fitness landscape produce statistical illusions of significance that would tend to reinforce a re-
searcher’s assumption of decomposability? We begin by introducing the concept of a fitness 
landscape and Kauffman’s (1993) NK model as a tool for modeling such landscapes. We then 
proceed through a series of simulations that demonstrate how the use of multiple regression to 
analyze observations from such landscapes can produce strong illusory significances, both over-
stating the statistical significances of some coefficients and identifying relationships that are not 
part of the underlying process used to generate the data as being significant. These problems are 
of particular concern because they do not stem from typical departures from the regression as-
sumptions—such as the independence of adjacent observations and the normality of error terms. 
As a consequence, the problems and their underlying source could be easily overlooked when 
results of analysis are inspected, particularly since research findings that identify significant rela-
tionships can offer considerable career benefits to the researcher. We also describe the underlying 
statistical causes of these illusions. Finally, we identify the circumstances under which problems 
such as the ones that we have identified could prove to be a serious threat to research validity.  

We have intentionally kept the focus of the article very narrow, intending that it serve as a com-
plement to the companion article (Gill, 2008) which considers the implications of landscape rug-
gedness for informing system research from a much broader perspective. To keep the body of the 
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paper from becoming too technical, details relating to the construction of the various simulations 
described are presented in an appendix.  

Fitness Functions and Landscapes 
As described in the companion paper (Gill, 2008), a fitness function serves to map a set of attrib-
utes into a single value that is indicative of the desirability of the particular combination. Concep-
tually, this function can be represented as: 

F = f(x1,x2,…,xN) 

where F is the fitness associated with a particular combination of specific values for the attributes 
x1 through xN. The term fitness landscape is used to refer to the behavior of the fitness function 
across the set of all possible values of its attributes. Conceptually, this corresponds to the “shape” 
of the function. 

The desirability aspect of a fitness function typically manifests itself in one or both of two ways: 

1. It may signify the survivability of a particular attribute combination. In biology and in 
genetic algorithms, for example, entities with higher fitness values are more likely to sur-
vive from one generation to the next than those with much lower values. 

2. It may serve to guide choice. In economics, for example, an underlying axiom of individ-
ual behavior involves allocating income so as to purchase that basket of goods and ser-
vices that maximizes utility.  

In both of these cases, we would not expect entities (e.g., informing systems) existing on such 
landscapes to be distributed randomly. Where fitness signifies survivability, we expect low fitness 
entities to perish, leaving a distribution dominated by higher fitness entities. Where fitness drives 
choice, we would expect that higher fitness combinations would be observed more commonly 
than lower fitness combinations. This is, of course, the fundamental governing principle of evolu-
tionary theory: that species migrate towards increased fitness over time. 

Kauffman’s NK Landscape Model 
Kauffman’s (1993) NK landscape model is a mathematical framework that can be used to de-
scribe the qualitative characteristics of a fitness function. It originated as means of characterizing 
the fitness of a chromosome, with the N referring to the number of genes. The K, in turn, refers to 
the number of other genes whose values must be ascertained before the contribution of a particu-
lar gene to fitness can be determined. It is, therefore, a measure of interdependence between ar-
guments. The model has two extreme points: 

• N, 0: At this point each gene contributes to fitness independently, leading to an overall 
fitness model that can be presented in the form: 

y1+y2+…+yN 

where yi is some transformation Ti(xi) that returns the impact of xi on fitness. In a basic 
linear regression model, the most common type employed in social science research, 
Ti(xi) would simply be aixi., where ai is a multiplicative coefficient. That is, the underly-
ing regression model has the form:  F = c + a1x1 + a2x2 + ... aNxN 

We refer to this landscape as the decomposable landscape. 

• N, N-1: At this point, the impact of a given characteristic on fitness can only be deter-
mined by considering the value of every other characteristic. In this case of complete in-
terdependency, no meaningful estimate of fitness can be made without knowing the val-
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ues of all N characteristics. We refer to this landscape as the chaotic landscape, or maxi-
mally rugged landscape.  In a regression context, the underlying model for the rugged 
landscape would include all possible interactions among the N independent variables: F = 
c + a1x1 + …+ aNxN+a1+Nx1x2 + a2+Nx1x3 + ... + a2

N
-1x1x2x3...xN 

For a decomposable (N,0) fitness landscape, there will be a single fitness peak where the fitness 
values y1 through yN are individually maximized. Somewhat less immediately obvious, and at the 
other extreme, the chaotic (N, N-1) fitness landscape can, for all intents and purposes, be modeled 
as a set of random numbers (Kauffman, 1993), thereby ensuring that no separable relationships 
between a subset of elements and fitness are likely to occur.  

To fully understand the nature of the chaotic landscape, we need to realize that in order to model 
it accurately with a tool such as linear regression we would need to create a separate interaction 
term for every possible combination of values—meaning that there would be 2N – 1 coefficients 
(allowing for a base case) plus a constant. Assuming that we had enough observations so that 
there was a least one in every cell and assuming minimal error, we would then be able to estimate 
the fitness of each cell in the landscape. If, on the other hand, we attempt to fit that N,N-1 land-
scape with a decomposable model (i.e., with the basic regression model that includes only N coef-
ficients: one for each of the independent variables), the only significances that should be observed 
would be coincidental. 

If a chaotic fitness landscape is modeled as a field of random numbers, it follows mathematically 
that such landscapes will necessarily have a large number of local fitness peaks (i.e., combina-
tions of x1,x2,…,xN where changing any single value will lead to a decline in fitness).  Specifi-
cally, when only moves to adjacent characteristic values are considered, the estimated number of 
peaks will be given by the formula (Kauffman, 1993, p. 47): 

 2N / (N+1) 

An example of this, for an NK space of dimension 6,5, is presented in Figure 1, where the peaks 
are indicated by the values in parentheses. In this case, the estimate would be for roughly 9 peaks 
(64/7), with the actual number being 10. In interpreting Figure 1, it is important to realize that 
adjacency in the tabular display does not necessarily imply adjacency as defined in the NK mod-
el, which refers to bitwise adjacency. For example, F(1,0,1,0,0,1) has a value of 0.852 and is a 
fitness peak. This can be determined by comparing its value to the 6 adjacent cells F(0,0,1,0,0,1) , 
F(1,1,1,0,0,1) , F(1,0,0,0,0,1) , F(1,0,1,1,0,1) , F(1,0,1,0,1,1) , and F(1,0,1,0,0,0)  whose values 
(lightly shaded) are 0.658, 0.115, 0.841, 0.843, 0.842 and 0.178, respectively. (A more detailed 
look at constructing a rugged fitness landscape using a spreadsheet is presented in the appendix.) 

 
Figure 1: Local fitness peaks (in parentheses) on a randomly generated NK fitness landscape of 

dimension 6,5. Row labels represent the first 3 characteristic values,  
column labels represent the remaining 3 values. 
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As the value of K declines, we should expect the number of peaks in the space to decline. This is 
most easily demonstrated for situations where our fitness space is partitioned between those at-
tributes that act decomposably and attributes that act interdependently, e.g., 

F = f(x1, x2,…, xK) + y1+K +  y2+K +…+  yN   

In this case, we have a chaotic fitness landscape of K,K+1 combined with N-K decomposable 
characteristics. Since all local peaks will occur where the decomposable portion is maximized, it 
follows that the multiple peaks will all be the result of the interactions between x1 through xK, 
meaning we would expect 2K/(K+1) peaks rather than the larger 2N/(N+1) number of peaks we 
would have estimated if the entire landscape were chaotic. 

Experimental Simulations 
The reasons that a rugged landscape might be a good model for informing system fitness are pre-
sented in the companion paper (Gill, 2008). What we now consider is the outcome of using mul-
tiple regression to analyze observations taken from an underlying landscape that is rugged. 

Simulation Design 
The design used for the simulations involved two separate manipulations: 1) nature of the under-
lying landscape and 2) presence or absence of migration. 

With respect to the underlying landscapes, there are many different structures that can lead to 
“ruggedness”. As a consequence, assuming any particular landscape shape may not prove gener-
alizable. For this reason, we test three alternative landscapes. These are defined as follows: 

• Chaotic: Fitness was determined by a non-decomposable function of all the relevant at-
tributes (i.e., f(x1,x2,…,xN), where N is the total number of attributes). This is equivalent 
to Kauffman’s N,N-1 landscape, with fitness values generated randomly, and represents 
the case where virtually no significant coefficients should be found when coefficient val-
ues for a standard linear model of the form c0+ a1x1 +  a2x2 +…+  aNxN are estimated us-
ing multiple linear regression. 

• Mixed: Fitness was determined in two parts: by a linear part involving a subset of the at-
tributes, a1x1 +  a2x2 +…+  aDxD, and by a non-decomposable function of all the relevant 
attributes, f(x1, x2,…, xN), where N is the total number of attributes. This form is not well 
described in N,K terms (since there are interactions between all variables in addition to 
an independent component for D of the variables). It is, however, the basis of a com-
monly used regression technique in which the coefficients a1 through aD represent main 
effects, while separately constructed terms are employed to capture interaction effects. 
Our design, however, presumes that the researcher believes the fitness space to be de-
composable, so no interaction terms are included in the analysis. In the absence of con-
trary theory predicting interactions, assuming no interaction would not be unreasonable 
from a practical standpoint since the number of possible interaction terms is huge. For 
example, if x1 through xN are all binary (0,1) variables, consistent with Kauffman’s mod-
el, to capture all the N-way interactions between the variables would require 2N separate 
terms. 

• Partitioned: The underlying function used to create fitness values was in two parts: a 
non-decomposable function of K attributes, f(x1, x2,…, xK), and a linear function of the 
remaining attributes, a1+K y1+K +  a2+K y2+K +…+  aN yN. It is intended to capture situations 
where variables either contribute decomposably or through interactions, but not both 
ways. 



Illusions of Significance 

202 

With respect to making migration our second manipulation, we propose the following rationale. 
The main characteristic distinguishing a fitness function from multi-argument functions in gen-
eral is that the value being returned has an associated desirability or survivability trait associated 
with it. If the entities on the landscape are intelligent and adaptable, it would then follow that they 
should attempt to reposition themselves on the landscape so as to achieve maximum fitness. This 
is, of course, the justification of axioms that provides the mathematical basis for most of classical 
economics (utility maximization) and much of contemporary finance (maximizing shareholder 
wealth). It would therefore follow that any quantitative analysis of observations drawn from a 
fitness landscape must consider the possibility that entities will not be randomly distributed over 
the fitness landscape. Instead, we would expect to see them occupying, or migrating to, local 
peaks or global peaks. As a consequence, each landscape received two treatments:  the first as-
suming the entities we were observing were uniformly distributed across the landscape (in the 8 
variable landscapes we used for our base case, that meant we used 28 or 256 observations repre-
senting each possible combination of 0s and 1s for all variables), the second assuming that enti-
ties had climbed to their local fitness peak. As part of our second analysis, we also performed 
sensitivity analysis that examined intermediate results during periods while entities were migrat-
ing to fitness, but had yet to reach their local peak. 

Simulation Hypotheses 
The underlying scenario of our experiments is that a researcher has acquired observational data 
from a rugged fitness landscape that includes a single fitness value (dependent variable) and mul-
tiple explanatory characteristics (independent variables) for each observation. We further assume 
that the researcher is unfamiliar with the structure of the landscape and therefore assumes that 
characteristics contribute to fitness in decomposable fashion, making a basic multiple regression 
model, F = c + a1x1 + a2x2 + ... aNxN, an obvious tool to apply. The companion paper (Gill, 2008) 
explains why it would be in the researcher’s best interest to use such an assumption as a starting 
point.  

This scenario motivates our main research question: Can applying multiple linear regression 
analysis to observations drawn from a rugged fitness landscape produce misleading results? 

We can operationalize the term “misleading” in the question with two specific hypotheses: 

H1. Using regression analysis to estimate the process underlying a rugged landscape will pro-
duce coefficients that are reflective of the underlying process for explanatory variables 
that contribute decomposably. 

H2. Using regression analysis to estimate the process underlying a rugged landscape will pro-
duce non-significant coefficients for explanatory variables that only contribute through 
interactions with other variables in the underlying process. 

The rationale behind these hypotheses is simple. For the first hypothesis, if regression analysis is 
an appropriate tool for rugged landscapes, we would expect it to be able to extract sensible values 
for those coefficients that are, in fact, contributing in the linearly additive manner that regression 
presupposes. For the second hypothesis, where strong interactions between variables are present, 
we would want our regression to indicate this lack of fit by producing non-significant coefficient 
estimates. We state the hypotheses so that each null hypothesis represents the case where mis-
leading values are obtained because, through experimental design, we know that the processes we 
are trying to fit do not match the structure of the regression equation. Thus, it makes sense to 
make our base case the assumption that errors will be introduced. 
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Experiment #1: Chaotic Landscape, No Migration 
This particular case is one of two trivial cases that can be addressed without extensive reporting 
of experimental results (see appendix Example 1, Exhibit 5). Because fitness values were ran-
domly assigned to each possible combination of variables, when you perform a regression to es-
timate fitness using the characteristics as explanatory variables, you get very low R2- values and 
statistically non-significant beta coefficients. Only the constant value is statistically significant 
and reflects the average of fitness for all observations. 

Thus, we find H2 is supported (H1 cannot be tested since there are no decomposable independent 
variables). In other words, in the absence of migration, using regression to analyze observations 
drawn from a chaotic fitness space does not produce any misleading results. The only danger such 
a landscape would present would be encouraging the researcher to conclude that the characteris-
tics involved do not impact fitness—which is patently false. The correct conclusion would be that 
the impact of the characteristics involved on fitness is not well described by a decomposable lin-
ear model. 

Experiment #2: Mixed Landscape, No Migration 
This particular case is second trivial case. Because fitness values were randomly assigned to each 
possible combination of variables, that portion of fitness that results from interactions between 
variables is treated by the equation as an error term. As a consequence, the analysis produces rea-
sonable estimates for the decomposable coefficients and non-significant estimates for the remain-
ing coefficients. Example 3, Exhibit 8 in the appendix illustrates this for a simulation with 8 vari-
ables, 4 of which also exert a decomposable impact on fitness. 

Here, we find both H1 and H2 are supported. Once again, the only danger here from a research 
standpoint is that the researcher might conclude, based upon the non-significance of the non-
decomposable coefficients, that these variables do not contribute to fitness. That would be a mis-
take, of course, since they do contribute—but only in a very complex way (i.e., through interac-
tions).  

Experiment #3: Partitioned Landscape, No Migration 
On the surface, the partitioned landscape seems similar to the mixed landscape. Actually, it is 
subtly different in a way that turns out to make a big difference to our results. Consider the parti-
tioned process: 

F = f(x1, x2,…, xK) + y1+K +  y2+K +…+  yN   

Because the chaotic and mixed cases assume that all variables interact, in each simulation we as-
sign a different random number to each combination. For the partitioned case, however, we only 
assign random values to each possible combination of non-decomposable values. If, for example, 
we have 8 variables in total and 2 are decomposable, the remaining 6 variables (K in the equation 
above) contribute through interactions with each other. That means that only 64 random numbers 
(26) need to be generated to simulate the interaction, and that the each value will be used 4 times. 
The results of 10 simulations, created using a process described in appendix Example 4, are 
shown below, in Table 1. 
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Table 1: Regression results for migrated peaks in partitioned space with 2 
decomposable variables and 6 interacting variables including all 256 observations  

 Peaks 
Adj. 
R^2 V1 V2 V3 V4 V5 V6 V7 V8 

# 
SIG 

1 12 0.73 D D N N N ***** *** ***** 3 
2 13 0.64 D D N N N N *** * 2 
3 7 0.60 D D N N N N N N 0 
4 9 0.62 D D N N N N * ** 2 
5 9 0.64 D D * *** * N * N 4 
6 9 0.63 D D *** N N N N * 2 
7 10 0.63 D D ***** N N N N N 1 
8 11 0.59 D D N N N N N N 0 
9 6 0.59 D D * N * N N N 2 

10 13 0.63 D D N * N * N N 2 
 9.9 0.63 Averages 1.8 
Legend: * p<0.05, ** p<0.01, *** p<0.001, ****  p<0.00001, ***** p<0.000001 
N = Not significant, N/A = Not available (model is over fitted or no variation encountered). 
D = Decomposable, with exact fit, E = Decomposable, with error in coefficient estimate 

 

What these results show is that 1.8 of the non-decomposable variables, on average, showed sig-
nificance of p<0.05 or better—often much better—for 10 separate replications of the experiment. 
Also, because we constructed the underlying process so that half the variance would be explained 
by the decomposable part, we expect  R2  to be about 0.5. Instead, the value averages 0.13 higher, 
implying that the (randomly generated) non-decomposable portion of the landscape explains the 
additional variance —which should not happen. Moreover, sampling error does not seem to be 
the culprit, since we generated an observation for each of the 256 possible combinations of inde-
pendent variables; there was no sampling involved. 

What is particularly remarkable about these results is the number of high significances encoun-
tered in variables that contribute only through interactions. As a consequence, we must reject H2. 
Using regression to analyze a partitioned fitness landscapes can produce erroneous significances. 
Moreover, we replicated these results on fitness landscapes of up to 12 variables (4096 observa-
tions) and the trend of large numbers or erroneous significances persisted. Hypothesis H1, on the 
other hand, was fully supported. The regressions did, in fact, produce extremely precise estimates 
for the coefficients of the decomposable variables. Unfortunately, such accuracy might serve to 
build the researcher’s confidence in the non-decomposable estimates as well. 

Although these results appear bewildering at first glance, the explanation for them is quite simple. 
Consider the underlying process we used to generate the observations: 

F = f(x1, x2,…, xK) + y1+K +  y2+K +…+  yN   

As expected, the regression algorithm used to estimate coefficients has no trouble detecting the 
significance of the decomposable coefficients (1+K through N). Since the t-tests on the beta coef-
ficients in regression test the effect of each independent variable after accounting for the effects 
of the other independent variables in the model, essentially the algorithm removes the decom-
posable variables and the variance they explain from the equation. The remaining (non-
decomposable) variables, 1 through K, are then used to explain the remaining variance. In our 
example, that would mean that we have effectively modeled a chaotic landscape using 6 terms. 
The problem is that this regression now has 4 copies of each observation. Unfortunately, such 
duplication of observations creates an artificially inflated sample size, which in turn causes the 
regression equation to yield significant t-tests on negligible terms. This is demonstrated in Table 
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2, which reports the results from partitioning our process into 4 decomposable variables and 4 
interacting variables. With this process, there are only 16 (24) possible combinations of the inter-
acting variables, which means they would be repeated 16 times in the 256 observation sample. As 
should be evident from the table, nearly 3 out of 4 estimated coefficients for the non-
decomposable variables are significant across 10 replications. In fact, they tend to be highly sig-
nificant. 

Table 2: Regression results for fitness in partitioned space with 4 decomposable 
variables and 4 interacting variables including all 256 observations  

 Peaks 
Adj. 
R2 V1 V2 V3 V4 V5 V6 V7 V8 # SIG 

1 2 0.65 D D D D ***** N *** *** 3
2 3 0.62 D D D D * N ***** ***** 2
3 2 0.66 D D D D N ***** N ** 2
4 4 0.49 D D D D ***** *** * N 3
5 4 0.62 D D D D ***** *** ***** N 3
6 2 0.53 D D D D * * ***** N 3
7 2 0.51 D D D D N ***** ** ***** 3
8 2 0.62 D D D D **** ***** N N 2
9 4 0.66 D D D D ***** ** ***** *** 4

10 5 0.59 D D D D ***** *** ***** ** 4
 3.0 0.60 Averages 2.9
Legend: * p<0.05, ** p<0.01, *** p<0.001, ****  p<0.00001, ***** p<0.000001 
N = Not significant, N/A = Not available (model is over fitted or no variation encountered). 
D = Decomposable, with exact fit, E = Decomposable, with error in coefficient estimate 

 

The fact that the source of the problem is straightforward does not make it any less significant. 
Unless the researcher happens to be very suspicious of his or her results—as a consequence of a 
strongly grounded theory being tested, for example—there would be little reason to dispute the 
results of a regression analysis that otherwise looks outstanding. Moreover, incorporating interac-
tion terms would not be a trivial matter. In our example with 2 decomposable variables, 64 sepa-
rate terms would be required. If, however, we also allow for the possibility of 2-way, 3-way and 
4-way interactions, the number of terms grows even larger and the difficulty of identifying the 
most appropriate interactions grows as well. Thus, we perceive the problem of erroneous signifi-
cances in partitioned landscapes to be a potentially serious threat to empirical research. 

Experiment #4: Chaotic Landscape, With Migration 
The underlying chaotic landscape ceases to be a trivial case when entities are allowed to migrate 
to their local peaks. The technique used to simulate migration is discussed in Example 1 of the 
appendix and essentially involves entities travelling to peaks by altering the characteristic offer-
ing the greatest fitness gain for each position until a peak was attained (a method also used by 
Kauffman, 1993). Our 8,7 landscape would offer roughly 28.4 such peaks  (28/9) according to 
Kauffman’s (1993) formula. The results of the analysis for 10 simulations are presented in Ta-
ble 3. 
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Table 3: Regression results for migrated peaks in 8,7 space 

 Peaks 
Adj. 
R2 V1 V2 V3 V4 V5 V6 V7 V8 

# 
SIG 

1 26 0.70 N ***** ***** **** ***** ***** * ** 7 
2 24 0.51 ***** ***** ***** N N N N * 4 
3 31 0.70 N ***** ***** **** ***** ***** ***** ** 7 
4 31 0.21 N * N *** N ***** *** N 4 
5 30 0.49 N * N ***** ***** ***** ** ***** 6 
6 33 0.15 N N N ** N ** N ***** 3 
7 24 0.51 ***** ** ***** ***** N ***** *** ***** 7 
8 32 0.19 N N N ***** N * N N 2 
9 30 0.15 N * N ** ** ***** N ** 5 

10 32 0.13 N N ** *** * N N * 4 
 29.3 0.37 Averages 4.9 
Legend: * p<0.05, ** p<0.01, *** p<0.001, ****  p<0.00001, ***** p<0.000001 
N = Not significant, N/A = Not available (model is over fitted or no variation encountered). 

 

These results provide a strong basis for rejecting H2 (again, H1 cannot be tested owing to lack of 
decomposability). Over half the interacting independent variables show misleading statistical sig-
nificances. What makes them particularly misleading is the fact that they were drawn from peaks. 
In a completely decomposable process, if a coefficient is positive with a high degree of signifi-
cance and represents a controllable variable (e.g., top management support in a system implemen-
tation), it would make sense for the researcher to recommend changing that characteristic in any 
entity for which it was set to a 0 value. If, however, all our entities have migrated to peaks, then 
changing the value to 1 on any peak where the value is 0 will lead to a decline in fitness; that is 
how a “peak” is defined. 

The explanation for these significances is, essentially, the same as it was for Experiment 3. 
Through migration, what were originally 256 different observations have become roughly 29 
clusters of identical observations. This clustering has the effect of creating lots of duplicates that 
artificially inflate the sample size; this, in turn, causes the regression algorithm to yield statisti-
cally significant coefficients for terms in the model that are really negligible (spurious signifi-
cances). These significant coefficients could, in turn, ultimately entice the unaware researcher to 
draw erroneous conclusions about the variables that really effect fitness. The nature of the prob-
lem caused by convergence is illustrated in Figure 2. In this illustration, the X variable has a dif-
ferent impact on fitness at each of the two possible values of Y (y0 and y1). At x0,y0 there is a 
peak where fitness reaches a maximum of f0. At x1,y1 there is a second peak where fitness reaches 
a maximum of f1. Assuming observations (shown as squares) cluster around peaks with some er-
ror, the resulting regression line (shown with arrows at both ends) would show a high R-square—
since a lot of variation in fitness is explained by the differences between x0 and x1, and y0 and 
y1—and yet the line would tell us absolutely nothing useful about the underlying process. With 
only two variables involved, the clustering of the data leading to this effect would be fairly obvi-
ous. With many interacting variables, it would be much harder to recognize. Also, as illustrated in 
the appendix Example 2, these types of coefficient significances remain relatively robust as ran-
dom error is introduced into both dependent and independent variables. 

Another possible objection to the observed significances might be that all entities are unlikely to 
have reached peaks. In Table 4, we test this for a sample 8,7 landscape. The Start column signi-
fies the initial landscape, while the number columns indicate the regression values after each step 
in the regression, until all entities have reached peaks in step 4 (same as the Final column). 
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The bottom row of the table shows the count of significant coefficients (p<0.05). What this indi-
cates is that as soon as a single step towards convergence is taken by entities on our fitness land-
scape, spurious significances start to arise. After just 3 steps, the number reaches its ultimate peak 
of 5, including many extremely significant coefficients. Thus, we must reject H2 even where mi-
gration is far from complete.  

Table 4: Regression results on 8,7 landscape during migration to peaks 
 Start 1 2 3 4 Final 

R2 <0.000 0.0960 0.2084 0.2497 0.2377 0.2377 
Const 0.504 0.934 0.966 0.962 0.964 0.964 
Coeff 1 -0.006 -0.013 -0.021 -0.020 -0.019 -0.019 
Coeff 2 -0.038 -0.023 -0.012 -0.019 -0.019 -0.019 
Coeff 3 0.018 0.029 0.029 0.033 0.032 0.032 
Coeff 4 0.048 -0.005 -0.012 -0.005 -0.005 -0.005 
Coeff 5 -0.042 -0.049 -0.044 -0.033 -0.033 -0.033 
Coeff 6 0.024 -0.016 -0.021 -0.015 -0.016 -0.016 
Coeff 7 -0.037 -0.001 -0.009 -0.011 -0.011 -0.011 
Coeff 8 -0.025 -0.012 0.005 0.006 0.006 0.006 
P Value 1 0.86890 0.27277 0.00712 0.00356 0.00355 0.00355 
P Value 2 0.30893 0.04207 0.11219 0.00304 0.00341 0.00341 
P Value 3 0.62995 0.00852 0.00006 0.00000 0.00000 0.00000 
P Value 4 0.19915 0.68987 0.14024 0.49842 0.47122 0.47122 
P Value 5 0.26238 0.00003 0.00000 0.00000 0.00000 0.00000 
P Value 6 0.52397 0.14881 0.00775 0.03164 0.02271 0.02271 
P Value 7 0.33131 0.96027 0.24959 0.12783 0.14751 0.14751 
P Value 8 0.50743 0.28962 0.46492 0.33519 0.30806 0.30806 
Count 0 3 4 5 5 5 

 

 
Figure 2: Illustration of peak convergence problem 
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Experiment #5: Mixed Landscape, With Migration 
When migration is incorporated in our mixed landscape, we see the same development of spuri-
ous significances that we observed for the 8,7 case with migration. The main difference is that the 
effect is even stronger, since few peaks develop. Since the results are qualitatively similar to 
those of the chaotic case, they are omitted. 

Of greater interest, in the mixed case, is what happens to the decomposable variables over the 
course of the migration. Table 5 illustrates this process for a single case, similar to Table 4 pre-
sented previously. Based on the process that we established (see Appendix), our estimate for each 
decomposable coefficient (Coeff1 through Coeff4) should be 0.125 and the Const estimate should 
be 0.25 (reflecting the mean value of the non-decomposable contribution to fitness). This is ap-
proximately the case when the process starts. 

Table 5: Migration steps of a mixed landscape from starting point to convergence 
 Start 1 2 3 4 5 Final 

# Independent 256 91 47 31 24 21 19
R2 0.37 0.77 0.90 0.94 0.96 0.97 0.97
Const 0.26 0.48 0.49 0.50 0.51 0.52 0.52
Coeff 1 0.13 0.13 0.13 0.12 0.11 0.10 0.10
Coeff 2 0.10 0.08 0.08 0.08 0.08 0.09 0.09
Coeff 3 0.11 0.08 0.08 0.08 0.08 0.08 0.09
Coeff 4 0.11 0.13 0.13 0.13 0.13 0.13 0.13
P Value 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
P Value 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
P Value 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
P Value 4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
P Value 5 0.167492 0.000060 0.000000 0.000000 0.000000 0.000000 0.000000
P Value 6 0.639501 0.000644 0.000000 0.000000 0.000000 0.000000 0.000000
P Value 7 0.429853 0.000363 0.000407 0.000002 0.000000 0.000000 0.000000
P Value 8 0.102342 0.469058 0.539482 0.240816 0.534751 0.416935 0.702114

 
As the process proceeds—towards a very high adjusted R2 of 0.97—we see significances develop 
for 3 of the 4 interacting variables, leading us to reject H2 once again. We also see, however, a 
gradual erosion of the accuracy of the estimates for the 4 decomposable coefficients—with p-
values suggesting that the estimates are far more accurate than they really are. Thus, the results of 
the experiment (which we replicated several times) cause us to reject H1 as well. In other words, 
when a basic linear regression model is fit to data from a mixed rugged fitness landscape with 
entity migration towards fitness, misleading estimates will not only result for the interacting 
(nondecomposable) variables, but also for the decomposable variables.  

Experiment #6: Partitioned Landscape, With Migration 
At the top level, the partitioned landscape can be decomposed into separate rugged, i.e., f(x1, 
x2,…, xK), and further decomposable,  i.e., a1+K y1+K +  a2+K y2+K +…+  aN yN, parts. As a conse-
quence, coefficient estimates for decomposable variables are not impacted by migration except to 
the extent that each variable quickly takes on a single value throughout the landscape—after 
which the coefficient values become impossible to determine. We verified this with several tests 
whose results are omitted. A demonstration that coefficient estimates remain valid as migration to 
fitness takes place in a purely decomposable process—representing the decomposable portion of 
the partitioned space—is presented in appendix Example 5. The only major concern surfaced by 
the experiment is that significances for the decomposable coefficient estimates proved to be vast-
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ly overstated. Thus, H1 can be accepted for a partitioned decomposable process, with appropriate 
qualifications relating to significance over-estimates, while H2 remains rejected.  

Summary of Experiments 
The results of the experiments are summarized in Table 6. The shaded areas, Experiments 3 
through 6, represent processes where H1 rejection (i.e., estimates of decomposable variable coef-
ficients are misleading) and/or H2 rejection (i.e., spurious significances are attributed to interact-
ing variable coefficients) occur as a consequence of the rugged fitness landscape characteristics 
of the underlying process. 

Table 6: Summary of Experimental Results 
 No Migration Migration 
Chaotic Experiment 1 

H1 Not tested 
H2 Supported 

Experiment 4 
H1 Not tested 
H2 Rejected 

Mixed Experiment 2 
H1 Supported 
H2 Supported 

Experiment 5 
H1 Rejected 
H2 Rejected 

Partitioned Experiment 3 
H1 Supported 
H2 Rejected 

Experiment 6 
H1 Qualified Support 
H2 Rejected 

Discussion 
As summarized in Table 6, the statistical illusions found in the six experimental simulations were 
concentrated in those processes where entities were undergoing migration towards fitness. What 
was not addressed, however, was the potential impact of the evolutionary process that involves 
failure of less fit entities, often referred to as “survival of the fittest”. In this section, we discuss 
this process from a conceptual standpoint. We then turn to the broader question of the likely pre-
requisites for the illusions we have discussed. 

Survival of the Fittest 
The mechanism for migration applied in Experiments 4 through 6 involved entities changing at-
tributes so as to increase fitness, thereby reaching a local peak. This is consistent with the per-
spective taken by many business disciplines—most notably economics and finance—for which 
utility maximization is a central axiom. It is also consistent with many cognitive models of fit-
ness-related activities, such as choosing what move to make in a game. Evolutionary models, on 
the other hand, show fitness increasing by a somewhat different mechanism. While search to-
wards fitness does occur—at the gene level, employing various reproductive techniques such as 
crossing-over, inversion, and mutation (Holland, 1992)—the survival of high fitness entities (and 
non-survival of less fit entities) is the fundamental mechanism through which overall and indi-
vidual entity fitness gradually increases from generation to generation. 

Because it is not clear that low-level techniques for generating new gene combinations would 
have much applicability to informing situations involving intelligent entities, it would be hard to 
develop convincing simulation models of the statistical impact of such processes. We can, how-
ever, predict that the non-survivability of certain attribute combinations could potentially cause 
serious sampling issues that might interfere with the validity of research conclusions. 

The problem occurs when some combinations of attributes in a rugged fitness landscape produce 
fitness values so low that the associated entity fails to survive. Where this occurs, subsequent 
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samples of the landscape will be unable to include the non-surviving entities attribute values. 
That, in turn, may lead to conclusions that are skewed with respect to these attributes. 

To illustrate the process, we draw upon a concrete example taken from the human resources lit-
erature. Recently, the Academy of Management Journal (AMJ) ran a special issue (Volume 50, 
No. 5) on evidence-based management in the human resources field. Of particular concern to re-
searchers was the degree to which practitioners were unaware of, or chose to ignore, some of the 
most significant findings of academic research. At the head of the AMJ list was the finding that 
“Intelligence predicts job performance better than conscientiousness (Schmidt & Hunter, 1998),” 
which elicited a particularly high level of disagreement from practitioners (Rynes, Giluk, & 
Brown, 2007, p. 988).  

Two general comments can be made about the specific finding. First, the dependent variable—job 
performance—is clearly a fitness measure. Indeed, in the military, annual employee evaluations 
are referred to as “fitness reports”. Second, we may reasonably conclude that the performance 
landscape is rugged. This can be asserted rather than conjectured because it is relatively easy to 
identify instances where the needs of the organization would have been better served by an em-
ployee screening process that placed a higher premium on conscientiousness relative to intelli-
gence. For example: 

1. Barings (“Barings debacle,” 2008). A trader who failed to follow established trading 
guidelines took a firm that had survived the Napoleonic Wars and put it out of business. 
 

2. Societe Generale (“French bank blames,” 2007). An employee who failed to establish 
trading guidelines lost $7 billion of the firm’s money, crippling it. 
 

3. Chernobyl (INSAG-7, 1992). Although the principal cause of the worst nuclear accident 
in history was an appallingly unstable reactor design, a lackadaisical attitude towards 
testing procedures on the part of operators was a significant contributor to the actual dis-
aster. 

Thus—bearing in mind that a large body of research found intelligence correlated with job per-
formance (e.g., Schmidt & Hunter, 1998)—we may conclude that neither intelligence nor consci-
entiousness is fully decomposable. Their relative contribution to fitness will vary according to the 
values of other characteristics related to the job and, possibly, upon each other—with the highly 
intelligent/highly non-conscientious combination seeming to pose a particularly serious threat.  

From a statistical standpoint, the fact that we have a fitness variable where insufficient fitness can 
lead to non-survival presents a serious empirical sampling issue. In our example, it would have 
been impossible to include either Barings or Chernobyl in any post-event study of the intelligence 
vs. conscientiousness tradeoff since one organization was disbanded and the referenced employ-
ees in the other all died. Thus, if conscientiousness-related failures occur at a rate lower than that 
of intelligence-related failures—and we make no assertions or conjectures on this point—the rela-
tive contribution of conscientiousness to survival could be severely under-sampled. Were this to 
be the case, employers with a sensible level of risk-aversion might be quite rational in preferring 
conscientiousness to intelligence in spite of the substantial body of empirical evidence that seems 
to support the benefits of intelligence. 

Although they have not been framed in terms of a rugged fitness landscape model, concerns of 
the type we have expressed have been raised in the research literature. Consider, for instance, a 
statement made in the context of the example we have been discussing: 
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…concepts such as contingencies, configurations, complexity, “equifinality” and trade-
offs all raise questions about the extent to which “average” findings can be generalized. 
(Rynes et al., 2007, p. 1001) 

It would be hard to devise a clearer statement of the care that must be taken in making practical 
application of statistical findings derived from the analysis of observations taken from a rugged 
fitness landscape.  

Prerequisites for Statistical Illusions 
Are the statistical anomalies that have been identified in Experiments 3 through 6 and discussed 
in our “survival of the fittest” example potential threats to the validity of research in the inform-
ing sciences? In order for such research to be at risk, several preconditions must be met: 

1. The landscape we are trying to explain must be a consequence of a process of unknown 
structure. If we know the structure of the underlying process, then we will not try to fit it 
with an inappropriate model. In the example offered by the companion paper (Gill, 2008), 
common sense alone would keep us from trying to perform a regression analysis of cook-
book recipe ingredients on the judged tastiness of the prepared dishes. If we did, how 
would we interpret our results? Suppose we found that garlic was a statistically signifi-
cant contributor to tastiness? Surely that wouldn’t mean that we could improve our recipe 
for butterscotch brownies by adding garlic to it. Landscapes that we intuitively know to 
be rugged are not the problem; it is the landscapes of undetermined structure that are of 
concern. 

2. The variable that we are trying to explain needs to be some sort of fitness measure. Un-
less the dependent variable involves desirability or survivability, there is no reason to an-
ticipate that migration of entities towards fitness will occur. That immediately eliminates 
the scenarios posing the greatest threat to statistical validity. 

3. The entities involved in the process need to be intelligent and adaptable. Similar to (2), if 
entities cannot adapt, there is no reason to expect migration to fitness to occur except 
through a much more drawn out process of survival of the fittest. 

4. Observational data needs to be an important contributor to our understanding of the 
landscape. In some disciplines, such as economics, theories of fitness can be entirely ma-
thematical in their derivation. In these cases, our tests of theory can be independent of the 
process by which theory is created—meaning the illusions we have presented may cause 
us to reject a theory that does not predict them (which is reasonable), but will not lead us 
to propose an erroneous theory based on the illusions we have observed. The threat to va-
lidity presents itself in those situations where our theory originates from our attempts to 
explain observations drawn from the same fitness landscape that we later use to test our 
theory. In this process, the illusions of significance that we have described could well 
make their way into theory. Should that happen, then our equally ill-conceived subse-
quent tests will tend to support our observation-derived theory. 

In addition to these four prerequisites, we would generally expect that a rugged fitness landscape 
would exhibit certain characteristic features. Among these: 

5. Plausible examples inconsistent with the general conclusions produced by a decomposa-
ble model are observed or can easily be constructed. The case of conscientiousness, pre-
sented in the previous section, would be typical of a rugged landscape, where simple 
rules (e.g., intelligent employees are better performers than conscientious employees) al-
most never apply across the entire fitness landscape.  
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6. A distribution of entities that includes a very wide range of controllable characteristics is 
observed. Where a landscape is decomposable, migration towards fitness will tend to 
produce convergence of characteristics, as a characteristic that enhances fitness of one 
entity enhances fitness of every other entity. In particular, we would expect that any char-
acteristic that can be controlled by an entity will increasingly converge to the same value 
across all entities. Where a landscape is rugged, however, a diversity of characteristics 
across entities will be present—as local fitness peaks will demand different combinations. 

If items (1) through (6) are all present, then there is ample reason to believe that the fitness land-
scape is rugged and that statistical techniques assuming decomposability should only be applied 
with the greatest of care. Even if migration is not occurring, we must still recognize that the char-
acteristics of the underlying landscape are inconsistent with the structure of the equation we are 
attempting to model it with. Under such circumstances, the best we can hope for is that we do not 
obtain spurious significances as part of our results. 

Conclusions 
Within the social science literature, particularly the business research literature, the empirical re-
search paper generally follows a familiar pattern. A problem is stated. The relevant literature is 
reviewed. A theory, based upon the literature, is presented and hypotheses consistent with that 
theory are proposed. A methodology through which empirical data was gathered is described. 
Analysis of the data is performed and the results are contrasted with the proposed hypotheses. 
Conclusions are then presented. 

Over the years, concerns regarding the practical relevance of the research conducted in this man-
ner have often been raised (e.g., Pfeffer, 2007). Researchers, however, have generally been far 
more complacent with respect to the rigor of that same research. We are, for example, very care-
ful not to draw conclusions from any evidence that could have occurred by chance more that 1 
time in 20 and often estimate the odds of our findings being coincidental to be far more remote. 

The power of our statistical tests, however, depends upon the degree to which the underlying 
process that generates our data conforms to the assumptions built into the analytical tool we em-
ploy. In the case of multiple regression with a linear model, and its close cousins factor analysis 
and structural equation modeling, the key assumption is that the explanatory variables contribute 
to the dependent variables decomposably. What the present paper has demonstrated is that, where 
this assumption is incorrect, serious inconsistencies between the results of the analysis and the 
actual process used to generate the data can emerge. In particular, estimates of significance that 
appear phenomenally good can be extremely misleading. They are, in fact, statistical illusions. 

To understand the potential impact of these illusions, it is critical that we recognize that they are 
NOT the result of randomness. Although we have generated random numbers to simulate variable 
interactions for the purpose of our experiments, within the actual processes that we are mimicking 
the interdependencies will be quite real and consistent over time or, at least, consistent until 
forces such as coevolution (Kauffman, 1993) change the fundamentals of the fitness landscape. 
What this means is that illusions present in one set of observations are likely to be present in other 
sets of observations gathered independently. The fundamental problem is the lack of fit between 
the process and the tool used to analyze the process, not sampling issues or random variations. 
The practical consequence of this would be that erroneous models of process introduced early in a 
stream of research could easily be replicated and reinforced by later research. All the while, the 
perception of rigor is retained. 

It is also important to note that the illusions discussed here particularly relate to the use of empiri-
cal data to develop and test theory. If the researcher’s goal in using linear regression is simply to 
predict fitness values for observations, then the analyses performed may be perfectly appropriate 
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for establishing a “best guess”—particularly if a lot of data has been acquired. For example, if an 
individual likes garlic, then it is perfectly reasonable to consider the presence or absence of garlic 
in a recipe in predicting whether or not the individual will enjoy it. Where the problem arises is 
when that data is also used as a basis for theoretical conclusions about the underlying process that 
causes individuals to like or dislike particular recipes. Unlike the decomposable case, in a rugged 
landscape, the finding that the presence of garlic contributes to an individual’s preference for a 
recipe is not equivalent to predicting that adding garlic to a recipe will improve the same individ-
ual’s preference for that particular recipe. 

In the companion paper (Gill, 2008), the argument has been presented that the types of processes 
that can create such illusions—situations where our dependent variable is some form of fitness 
and the impact of our independent variables on fitness is interdependent—are likely to be quite 
common for research efforts involving informing systems. As a consequence, we need to be very 
cautious in attributing significance to the statistical results based upon the analysis of observa-
tional findings. In particular, we need to be extraordinarily careful about developing “theory” 
based upon these results. The late Jens Mende (2005) has already warned the informing sciences 
about the dangers of empiricism from a philosophical perspective, asserting: 

[A] discipline only qualifies for the status of a science after it has progressed beyond em-
pirical generalisations to explanatory theories; but although empirical methods are useful 
for discovering the former, they are inherently useless for creating the latter. (Mende, p. 
189) 

Our findings, however, go a step further. Where a rugged fitness landscape is involved, casual 
analysis of empirical data without careful consideration of the underlying process may not even 
serve us well in achieving valid empirical generalizations.  
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Appendix:  
Spreadsheet Examples of a Rugged Fitness Landscape 

This appendix provides an outline for constructing a rugged fitness landscape using a spreadsheet, 
which should allow the reader to confirm or extend the results presented in the mathematical 
analysis portions of the paper. 

Kauffman’s (1993) NK model is presented in terms of binary strings of 0 and 1. As a result, inde-
pendent values landscape where N=8 will be represented as an 8 bit string, e.g., 01100101. It nec-
essarily follows, that there will be 256 (28) possible combinations for which fitness values need to 
be assigned, starting at 00000000 and ending at 11111111. 

Random N,N-1 Landscapes 
To simulate the 8,7 landscape (any other N,N-1 landscape can be simulated by extending the 
technique), we created an 8 column range with all possible bit permutations in order then, in the 
adjacent column, copied 256 random number values. These numbers were generated on a sepa-
rate page using the RAND() function, then pasted using Paste Values options (thereby preventing 
numbers from regenerating every time the spreadsheet recalculates). Next to which we placed the 
row number (using the Excel ROW() function) as shown below as Exhibit 1: 

 
Exhibit 1: Example of fitness values (column I) and bit values (columns A through H). 

Because of the way we created the bit permutations, the 8 bits (Columns A-H) were actually the 
binary equivalent of the row number -1. For example, Row 14 consists of the bits for the binary 
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value of 13, i.e., 00001101. Identifying fitness values by their row number is useful in performing 
the next step, the search for local peaks. 

To conduct a search for local peaks, individual entities on the fitness space transition to their best 
neighbor, unless their fitness is higher than all their neighbors, in which case the entity is on a 
local fitness peak (and therefore remains in position). The state space stabilizes at the point where 
every entity is on a local fitness peak. 

In the N-K model, neighbors of a given entity are defined as the set of positions that are 1 bit dif-
ferent. For example, the position 00001111 has eight neighbors, 10001111, 01001111, 00101111, 
00011111, 00000111, 00001011, 00001101, and 00001110. To determine if an entity needed to 
change positions, we first compute the maximum of the entity’s fitness and that of its 8 neighbors. 
This is done using the formula n Exhibit 2: 

 
Exhibit 2: Formula for computing maximum adjacent value 

For those not familiar with some of the functions used, the ADDRESS function returns the ad-
dress of a particular row and column of the spreadsheet. In this case, since I is the 9th letter of the 
alphabet, column 9 contains the random fitness value. The J column (as mentioned earlier) con-
tains the row number. The INT function truncates a value to its integer equivalent, while the 
MOD function returns the remainder of its first argument divided by its second argument. Thus, 
MOD(J1-1,2) would return the rightmost bit of an integer, since the remainder of any integer di-
vided by two is either 0 or 1. To get the next bit, you use the formula MOD(INT((J1-1)/2),2). To 
get the next bit, you use MOD(INT((J1-1)/4),2) and continue the process by dividing by the re-
maining powers of 2, i.e., 8, 16, 32, 64 and, finally, 128. 

Once you know if a particular bit is on or off, you know whether that particular neighbor is on a 
higher or lower row. For example, if the rightmost bit is 0, the neighbor is on the next row. If the 
first bit is 1, the neighbor is on the preceding row. More generally, if we number the bits from 0 
to 7, going from right to left, the general formula for finding the row for the neighbor at bit posi-
tion k is: 

 OriginalRow (J1 in the example) + 2k – 2k+1*(0 or 1, depending if the bit is on) 

Or, more specifically: 

 J1 +  2k – 2k+1*( MOD(INT((J1-1)/ 2k),2)) 

with 2k being replaced by the corresponding values of 2,4,8,…,128. Under this formula, you 
move forward 2k when the bit is 0, backwards by 2k when it is 1. 
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Once we’ve determined the neighbor’s row, the ADDRESS(row,9) returns the cell address. The 
INDIRECT function then takes that address and returns its value. The outer MAX function then 
returns the maximum of these values. 

Unfortunately, using the MAX function gives us the value but not where it is located in the fitness 
space. So, in the next cell, we match the neighbors to the maximum values and then return the 
row where the match was found. This is done with the highly nested IF statement shown in Ex-
hibit 3. 

 
Exhibit 3: Formula for determining row source of maximum adjacent value 

Each IF clause compares the neighbor value to the computed maximum. If it matches, the com-
puted row value for the neighbor is returned. If not, the value of the nested IF looking at the next 
set of values is returned. 

Once we’ve got the value, row pair of cells, we can copy them into successive columns until the 
row values stop changing. (For example, row 2 moved to row 4 in column L, but stayed the same 
in column N, meaning that 4 is a peak (its value happens to be .979 in the example, as seen in the 
original diagram). According to Kauffman (1993, p. 49), the number of steps before convergence 
is reached in a random space is on the order of Log2(Number of Neighbors – 1), of 3 in our ex-
ample. To be safe, we set up 8 separate value-column pairs then tested for convergence (which 
always had occurred). 

Once the converged set of fitness values had been obtained, the number of peaks was counted by 
copying the converged values from the fitness level and row position columns (all 256 rows) to 
another worksheet page, then using Excel’s Remove Duplicates function to establish the unique 
peaks. 

To perform the regression analysis, we used the bit values (Columns A through H) of the peak 
cell as independent variables and the converged fitness values column as the dependent variable. 
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Non-Chaotic Landscapes 
There are many possible ways that N,K landscapes with K<N-1 could be modeled. Since this pa-
per was not intended for use by evolutionary biologists but rather for purposes of qualitative 
analysis, we modeled them by separating out values that always contribute to fitness from those 
that interact—the latter continuing to be simulated with a random number. For example, to simu-
late a mixed landscape with 4 variables that contribute decomposably, as well as interactively, we 
used: 

 0.125 * (Bit 7 + Bit 6 + Bit 5 + Bit 4) + 0.5 * Random Number 

A partitioned landscape has a similar structure, but the randomness is different. Specifically, to 
simulate a partitioned landscape, we needed to ensure that the interacting portion of the landscape 
function always contributed the same value each time the same set of variable values was pro-
vided. To accomplish this in the spreadsheet, we placed all the interacting variables in the right-
most columns (e.g., E through H in Exhibit 1) and then used a formula that caused the same se-
quence to repeat once we had cycled through all combinations. An example of this formula is 
provided in Exhibit 4, where 4 variables are decomposable and 4 variables interact. 

 
Exhibit 4: 8 characteristic partitioned process with 4 interacting variables 

In this example, the range $A$1:$A$64 contains random numbers. Only 16 of these (24) are used, 
reflecting the 16 combinations of decomposable variables. Rather than having explicit character-
istic columns (e.g., A through H in Exhibit 1) the values of the characteristics are computed using 
the row number. 

Example 1: Regression Results for 8,7  
To demonstrate the impact of fitness peaks of regression results, the output of 3 different regres-
sions are presented. In the first example, we first show the regression of the 256 raw (unmigrated) 
random fitness values against the 8 bit values. As shown as Exhibit 5, the results show no signifi-
cant patterns with a constant value around 0.5 (the mean value of our random number generator) 
and no significant coefficients—which is what we’d hope for given that the dependent variable 
values were entirely random. 
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Exhibit 5: Regression of bit variable values against 256 random fitness values 

In the next regression, Exhibit 6, the same 256 random values are used, but values have migrated 
to the 26 local fitness peaks, meaning that the 256 observations are drawn from a pool of only 26 
fitness values. As a result, patterns that would not be particularly significant in 26 observations 
appear vastly more significant when assumed to have come from 256 observations. In this case, 
an adjusted R2 of 0.70 has been observed and 7 of the 8 bit variable values are significant—6 of 
them at the p<0.001. 
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Exhibit 6: Regression of NK 8,7 values after they have migrated their peaks 

Example 2: 8,7 Landscape with Likert Independent Variables and 
Random Error 
To determine if the large variable significances observed were purely a function of binary inde-
pendent variables and the limited dependent variables (i.e., only peak values were represented), 
we took an 8,7 run (Exhibit 6) and gradually transformed it as follows: 

1. Input variables were transformed to Likert style variables on a 7 point scale. This was 
done with the transformation: Binary Value * 3 + Integer Value (4*Random Number be-
tween 0 and 1). This allowed for potential overlap at the 3 value, adding error to the in-
put. 
 

2. A random error component was added to the fitness value. Because all fully migrated ob-
servations had fitness between 0.7 and 1.00, and 99% had fitness between 0.75 and 1.00, 
the dependent range was treated as 0.25. The following error distributions were tested: 

a. 0 random dependent error 
b. Average 5% random dependent error: computed using 0.025*(0.5-Random 

Number between 0 and 1). 
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c. Average 10% random dependent error: computed using 0.05*(0.5-Random 
Number between 0 and 1). 

d. Average 20% random dependent error: computed using 0.10*(0.5-Random 
Number between 0 and 1). 
 

3. As a further test, the original binary independent variables were regressed against the 
20% transformation of the dependent variable 

The results of these tests are presented in Exhibit 7. 

 
8,7 Run 

1 
Likert 
Only 

Likert + 
5% 

Likert + 
10% 

Likert + 
20% 

Binary 
+ 20% 

R2 0.6975 0.4377 0.4238 0.4191 0.2986 0.5556 
Const 0.9836 1.0003 0.9979 1.0021 0.9986 0.9862 
Coeff 1 0.0046 0.0008 0.0007 0.0017 0.0003 0.0062 
Coeff 2 -0.0648 -0.0135 -0.0134 -0.0138 -0.0132 -0.0678 
Coeff 3 -0.0462 -0.0098 -0.0097 -0.0095 -0.0090 -0.0446 
Coeff 4 0.0193 0.0050 0.0049 0.0043 0.0063 0.0182 
Coeff 5 0.0204 0.0038 0.0041 0.0038 0.0039 0.0210 
Coeff 6 -0.0291 -0.0059 -0.0057 -0.0063 -0.0058 -0.0307 
Coeff 7 -0.0316 -0.0072 -0.0073 -0.0075 -0.0071 -0.0321 
Coeff 8 0.0130 0.0050 0.0052 0.0047 0.0032 0.0099 
P Value 1 0.29163 0.57308 0.63607 0.27652 0.88149 0.29642 
P Value 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
P Value 3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
P Value 4 0.00001 0.00099 0.00139 0.00621 0.00096 0.00238 
P Value 5 0.00000 0.01273 0.00823 0.01885 0.04142 0.00052 
P Value 6 0.00000 0.00012 0.00027 0.00009 0.00268 0.00000 
P Value 7 0.00000 0.00000 0.00000 0.00000 0.00019 0.00000 
P Value 8 0.00170 0.00083 0.00065 0.00266 0.08981 0.07905 

Exhibit 7: Tests of random transformations applied to 8,7 results 

What these results demonstrate is the robustness of the observed significances in the face of add-
ed randomness. Although the transformation of the input variables to Likert scales added consid-
erable error (e.g., roughly 25% of all observations were expected to be 3 for a given variable—
which was an ambiguous value) that was reflected in the reduced adjusted R2, the pattern of vari-
able significances remained strong. Only at the 20% error case did significances start to drop out 
(see Variable 8), but this was true whether or not the Likert input scale was used. 

What this demonstrates is that the significances produced by the migration process cannot neces-
sarily be detected through duplicate observations. Just incorporating randomness in the transfor-
mation of binary variables to a Likert scale eliminated duplicate rows. Adding any randomness to 
the fitness value then eliminated duplication of dependent variable values. Thus, although the un-
derlying pattern of significances certainly was a result of observations clustering around peaks, 
such clustering would not be detectable through a casual inspection of the data when error in 
measurement is present. 
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Example 3: Regression Results for Mixed Landscape  
In the next example, mixed landscape is simulated using the formula presented earlier in the ap-
pendix, relabeled to reflect the output variable names, i.e.: 

 0.125*(X Variable 1 + X Variable 2 + X Variable 3 + X Variable 4) + 0.5*Random Number 

The same set of 256 random values used in Exhibits 5 and 6 were reused for this example. For the 
first regression we use the 256 raw (unmigrated) fitness values. Based on the model used to pro-
duce the data, the underlying process should produce an R2 value of 0.5 (since half our variance is 
actually predicted by variables 1 through 4), a constant value of 0.25 (the mean of the random 
component of fitness), and individual coefficient values of 0.125 for each of the first four values, 
with insignificant coefficients for the remaining 4—which make no contribution to fitness beyond 
coincidence. As shown in Exhibit 8, our results largely conform to our expectations. (Although 
the R2 is a bit low and coefficient estimates are not exact, all values are within reasonable bounds. 
Tests on other runs often led to even closer estimates).  

 
Exhibit 8: Regression results for mixed case with 4 decomposable variables  

on raw (unmigrated) values 

The final example, presented in Exhibit 9, shows the same model presented in Exhibit 8 after the 
observations have migrated to the 19 available peaks (the number of peaks declining, as pre-
dicted, with the drop in K value from 7 to 3). A number of interesting comparisons to Exhibit 8 
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can be made. First, the significances of the fundamental underlying model (for variables 1 
through 4) remain intact. Second, the R2 value is far too high (as a consequence of the declining 
number of independent observations). Third, we have picked up illusory significances on 3 of the 
4 remaining variables—although the coefficient values are lower than those for Variables 1 
through 4. Fourth, the constant (intercept) is almost twice what it should be.  

What this example should make clear is the degree to which attempting to analyze a multi-peaked 
evolutionary process using a linear model that assumes decomposability can lead to misleading 
results that imply significant relationships that don’t exist. 

 
Exhibit 9: Regression of mixed case with 4 decomposable variables after migration to peaks 

It needs to be emphasized that the results in Exhibit 9 are entirely a result of the fact that multiple 
observations are being generated by each peak—confounding the ability of the regression model 
to accurately estimate significances. This is illustrated in Exhibit 10, where the same data used for 
Exhibit 9 has been compressed down to 19 observations, i.e., one observation per peak. This eli-
minates the confounding effect of the number of unique observations being inconsistent with the 
number of observations used to estimate significances and produces a model that is quite close to 
the original underlying model, even though our number of observations is well below what is 
usually recommended for regression analysis. 
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Exhibit 10: Regression of converged mixed case with 19 peaks with all duplicates removed 

Example 4: Regression Results for Partitioned Landscape  
In the next example, mixed landscape is simulated using the formula presented earlier in the ap-
pendix, relabeled to reflect the output variable names, i.e.: 

 0.125*(X Variable 1 + X Variable 2 + X Variable 3 + X Variable 4) +  
  0.5 * Interaction Random Number 

Based on the model used to produce the data, the underlying process should produce an R-
squared value of 0.5 (since half our variance is actually predicted by variables 1 through 4), a 
constant value of 0.25 (the mean of the random component of fitness), and individual coefficient 
values of 0.125 for each of the first four values, with insignificant coefficients for the remaining 
4—which make no contribution to fitness beyond coincidence. As shown in Exhibit 11, our re-
sults conform to our expectations for the decomposable variables but are wildly different for the 
interacting variables, with high significances being detected in 3 of the 4 cases. 
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Exhibit 11: Regression of 8 variable partitioned process with 4 interacting variables 

Example 5: Continuous Convergence in 8,0 Landscape  
In Example 4 we found that illusions of significance will appear for interacting variables without 
migration to fitness in partitioned processes (unlike the chaotic and mixed examples). For this 
reason, in considering the impact of migration to fitness for partitioned processes, what is of par-
ticular importance is what happens to the decomposable portion of the fitness function. To test 
this, we constructed a model of the form: 

Y = 0.99 * (V1 + V2 +V3 + V4+V5+V6+V7+V8) + 0.01 * Random Number 

The random number was included to prevent all cells from migrating on a particular path (though 
we later confirmed, in a separate test, that it has no effect; the same phenomenon is observed 
without it). 

The results, presented in Exhibit 12, demonstrate a good estimate for each step (Const should be 
.005, the mean value of the error term, and each variable coefficient should be 0.12375, which is 
0.99*0.125), although some drop off in accuracy of the constant and coefficient estimates is noted 
as the number of independent observations shrinks. This is to be expected, since each step essen-
tially eliminates all the lowest observations from the sample, causing the slight randomness in the 
sample to exert greater influence on the estimates (e.g., consider how errors in closely spaced 



 Gill & Sincich 

 225 

points located far away from the Y-intercept of a line cause the line to pivot more dramatically 
than evenly spaced points with some observations close to the Y intercept). In each case, all p 
values were 0 (meaning their estimated value was below the accuracy threshold used by Excel). 
Only 4 steps are shown because, by step 5, low fitness 0 values for some bits had been entirely 
eliminated from the sample as a consequence of convergence. 

 Start 1 2 3 4 Final 
# Independent 256 106 79 35 19 1
R2 0.999716 0.999927 0.99991 0.99991548 0.999938 N/A
Const 0.005255 0.01137 0.0144 0.01857462 0.022771 N/A
Coeff 1 0.123878 0.123662 0.12363 0.12358929 0.124457 N/A
Coeff 2 0.123328 0.122631 0.12225 0.12243324 0.12112 N/A
Coeff 3 0.123351 0.122682 0.12247 0.12157904 0.121471 N/A
Coeff 4 0.123437 0.123292 0.12264 0.12226362 0.121248 N/A
Coeff 5 0.124262 0.123399 0.12246 0.12099419 0.120737 N/A
Coeff 6 0.123577 0.122718 0.12204 0.1209377 0.119483 N/A
Coeff 7 0.123458 0.12271 0.12223 0.12196444 0.121796 N/A
Coeff 8 0.124356 0.123083 0.12206 0.12100948 0.119802 N/A

Exhibit 12: Convergence of a decomposable 8,0 landscape 

One aspect of the migration that is of concern, even in the 8,0 case, is the vast overestimate of 
coefficient accuracy that takes place as the peak is approached. In Exhibit 13, for example, we see 
the full coefficient results for Step 4 of Exhibit 12. What is clear is that every single coefficient is 
slightly misestimated but not a single 95% range estimate includes the correct 0.12375 value—
and only one (Coeff1) comes even close. The conclusion we may draw from this is that even 
where an underlying process is decomposable, the process of migration towards peak fitness may 
lead to excessive confidence in estimates. 

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 
Const 0.022771 0.000539 42.27015 4.5E-115 0.021709572 0.023832
Coeff 1 0.124457 0.000295 421.5741 0 0.123875812 0.125039
Coeff 2 0.12112 0.000193 626.5277 0 0.120738818 0.1215
Coeff 3 0.121471 0.000249 487.497 0 0.120980429 0.121962
Coeff 4 0.121248 0.000277 438.0766 0 0.120702393 0.121793
Coeff 5 0.120737 0.000204 591.4528 0 0.120334694 0.121139
Coeff 6 0.119483 0.000337 354.38 0 0.118818715 0.120147
Coeff 7 0.121796 0.000201 606.8647 0 0.121401186 0.122192
Coeff 8 0.119802 0.000173 691.3026 0 0.119460611 0.120143

Exhibit 13: Coefficient estimates of 8,0 landscape near convergence 
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