

TASK COMPLEXITY AND DESIGN SCIENCE

T.Grandon Gill
IS/DS, University of South Florida

Tampa, FL , 33620, USA

And

William F. Murphy, Jr.
IS/DS, University of South Florida

Tampa, FL , 33620, USA

ABSTRACT

Design problems manifest themselves in many ways. Before
anything resembling a true “science of design” can emerge,
tools for classifying the design task must be developed. One
such tool involves the task complexity construct, which comes
in three distinct forms: objective complexity, problem space
complexity and lack of structure. These forms, which can
appear individually or in combination, each demand different
approaches to the design task. Objective complexity entails a
process dominated by search. Problem space complexity is
often addressed by the accumulation of design rules. Lack of
structure can benefit from the creation of different types of
models. This paper describes the task complexity construct and
explores—using a mix of theory and examples—its relationship
to design.

Keywords: Task complexity, design science, goal setting,
expertise, effectuation, entrenchment, artifacts, problem space.

1. INTRODUCTION

Design science is the emerging field that attempts to develop
systematic rules and theories that can be applied to the design
process. Design problems manifest themselves in many forms.
These forms can range from highly artistic to highly technical,
or both. They may be tightly constrained or unconstrained. It
may be easy to recognize the strength of a given design, but for
other designs, the fitness of the design may be highly uncertain.
It therefore seems unlikely that any universal design principles
will be discovered that apply equally to all design situations.
Instead, to advance the field we must first focus of developing
schemes for classifying and differentiating design tasks in a way
that allows different approaches to be prescribed for different
tasks.

One such classification scheme that offers plausible benefits is
based upon the task complexity construct. In recent years,
considerable progress has been made in distinguishing different
types of complexity [8]. The present paper introduces three
broad classes of task complexity definitions that have appeared
in the research literature. Using examples, it then examines how
each class leads to different design challenges and how those
challenges may be resolved. Finally, it synthesizes these

findings into a unified scheme for classifying design tasks.
While no scheme of this type can fully determine the “best”
design approach, we believe it represents a promising start.

2. TASK COMPLEXITY

Task complexity is a construct that, in the broadest terms,
attempts to explain how the characteristics of a task impact the
cognitive demands placed upon the task performer. The
construct is most commonly applied in the fields of
management and psychology and the most commonly
referenced attempts to define the term are more than two
decades old [1][15].

One aspect of task complexity that makes it particularly
problematic is the myriad ways in which it has been defined. A
recent study found 13 distinct definitions [8] that fell into 5
general classes:

1. Complexity as source of difficulty
2. Complexity as a source of information processing

requirements
3. Complexity resulting from lack of task structure
4. Complexity as a measure of problem space characteristics

(e.g., number of paths, amount of required knowledge)
5. Complexity as an objective function of task characteristics

(e.g., number of task elements, degree of interrelationship
between elements, dynamics of task objectives)

Because (1) and (2) are presumed consequences of complexity,
while (3) and (4) are antecedents, these classes can be further
simplified into three dimensions [6]:

I. Objective Complexity
 Elements, Interrelationships, Dynamics 
 Complexity  Ruggedness

II. Problem Space Complexity
Problem Space Characteristics 

 Complexity  Information Processing

III. Unfamiliarity
Lack of Structure 
 Complexity  Perceived Difficulty

The term ruggedness, presented as the consequence of objective
complexity, draws upon the concept of a fitness landscape,
introduced in evolutionary biology [10]. This form of
complexity occurs when a task involves many attributes that
interrelate, leading to a large possible solution space with many
local peaks. A good example of this is the recipes in a

cookbook, which can be viewed as mapping between
ingredients and fitness outcomes such as taste and/or nutrition.
In theory, at least, each recipe represents the author’s local
peak. Typical of this complexity, the contribution of an
individual ingredient to that fitness is relatively meaningless,
since a recipe’s overall fitness is the result of the interaction

between all the ingredients, as well as other actions (e.g., how
they are mixed, cooking times, temperatures).

Problem space complexity views complexity in terms of the
characteristics of the task-specific knowledge being applied by
the task performer. Many of these characteristics would be
familiar to computer scientists as metrics used to estimate the
complexity of a computer program, such as number of paths
(cyclomatic complexity [12]), amount of knowledge (e.g., lines
of code, number of rules) or some theoretical minimum
program size (e.g., Kolmogorov complexity [11]). In general,
we would expect information processing rates to grow with
accumulating knowledge, although such a relationship is better
viewed as approximate than definitional.

Unfamiliarity is, in many respects, nearly the opposite of
problem space complexity since it represents the absence of
task-specific knowledge. For unfamiliar tasks, we are forced to
rely on general knowledge and unreliable techniques such as
analogy. Because these unfamiliar processes tend to place heavy
loads on working memory [14], they tend to be perceived as
difficult by the task performer. Once again, this relationship
between unfamiliarity and difficulty is imperfect, but tends to
hold true more often than not.

3. THE DESIGN TASK

Before considering the impact of task complexity on design, it
is useful to define what we mean by “the design task”. As
illustrated in Figure 1, we treat the task as having three principal
elements, two in the environment and one in the mind of the
designer:

1. A design fitness landscape, which maps the characteristics

of the design into a design fitness value.
2. Artifacts developed by the designer.
3. A problem space that the designer uses to perform the

design task.

Naturally, where a design task is beyond the capabilities of a
single designer, the problem space may need to span multiple
individuals.

Figure 1: Overview of design task

3.1 Design Fitness Landscape
The design fitness landscape maps design attributes, such as
size, functionality, reliability, and so forth into a “fitness” value.
As discussed elsewhere [7], what constitutes fitness can vary
considerably. Its most direct translation might be to a metric
such as immediate usefulness. On the other hand, it might also
represent the likelihood that the design will diffuse, inspire
other designs (reproduce) and evolve over time, a form more in
line with the evolutionary concept of fitness.

The design fitness landscape can be characterized in terms of its
ruggedness, linking it to objective complexity. On a rugged
design landscape, many local maxima exist for different values
of design attributes. By virtue of the string interaction between
these attributes, we can also see very sharp jumps or drop-offs
in fitness with small incremental changes. To return to the
recipe analogy, think what happens to the resulting cake when
you accidentally omit the ½ teaspoon of baking power called for
by the recipe.

3.2 Artifacts
Within the design task, we treat artifacts in the most general
way, consistent with design science research [9]. Thus, artifacts
consist not only of the end products of a design process but also
all the intermediate products. The latter group could include
plans, design documents, communications between designers,
prototypes, and so forth. These intermediate artifacts provide
both a means of conserving working memory within the
designer’s problem space and a means of communicating design
information to other stakeholders in the design process.

3.3 Problem Space
The problem space describes the internal representation within
the mind of a designer (although, as mentioned earlier,
collaboration between multiple individual designer problem
spaces might have to be taken into account “real world” tasks).
It is assumed to contain a representation of the problem within a
state space, operators for transforming the state space,
constraints that prevent inappropriate states and search control
knowledge [2].
We refer to a series of transitions through the problem space as
a path. To provide a term comparable to ruggedness and
unfamiliarity, we describe the high complexity case as high
path entropy. The choice of entropy here is meant to convey the
qualitative sense that the most challenging design problem
spaces are those where:

• Uncertainty: Considerable uncertainty exists in the choice

of paths based on existing task performer knowledge.
• Constraints: Many paths exist that do not lead to the

intended design end state.
• Irreversibility: Operators, once applied, are irreversible or

costly to reverse

It should be emphasized that because problem space complexity
exists within the mind of the task performer, new knowledge

may change the problem space in a manner that reduces the path
entropy associated with a particular task. For example, imagine
you are attempting to navigate between two locations in a city
laid out in a grid (such as Manhattan) using only your position.
In this case, any turn that brings you closer in distance to your
destination will generally be a suitable path. Thus, while many
path choices are available, the path entropy is low. Now
consider how the task changes for a city laid out haphazardly
(such as Boston). For such a city, many turns that appear to
bring you closer in distance to the desired destination will, in
fact, prove to be poor choices as a result of curves, dead ends
and one-way streets. This is the high path entropy case. That
high entropy is not intrinsic to the task, however. Rather, it is a
function of your internal representation of the task. In the highly
improbably event that you could find someone in Boston who
was willing to give you accurate directions, the path entropy
would drop since you would now know what choice to make at
every turn.

It is also possible, of course, for a task to include uncertainty
that is irreducible. No matter how good a solitaire player you
are, some deals simply cannot lead to a successful outcome.
This type of uncertainty could well be considered part of
objective complexity. The problem is, outside of games of
chance, it is often hard to tell what uncertainty is reducible and
what is not. Thus, it generally makes sense to treat both forms
as sources of path entropy within the problem space.

4. COMPLEXITY OF THE DESIGN TASK

Having described both the sources of task complexity and the
nature of the design task, we can now turn to the key objective
of this paper and consider the complexity of the design task. We
do this considering at each of the three task complexity
dimensions.

4.1 Design and Path Entropy
The presence of path entropy in the design tasks implies that no
matter how clearly specified your design end state may be, and
how great your familiarity with the task, achieving the intended
goal will require considerable attention and care.

As an example, consider the contrast between how computers
are configured today versus the situation that existed in the late
1970s. Today, the “designer” might be a customer who logs into
a web site (such as Dell), chooses a model and then selects or
deselects a series of options. For the most part, options do not
interact in complex ways to determine fitness (e.g., a large disk
drive is better than a small one, more RAM is better than less,
faster processors are better than slower ones). Thus, the task of
“designing” the system has become trivial and can be solved
with a simple template. Many would not consider it design
science at all [9].

In the late 1970s, however, the situation was very different.
Some companies, such as Digital Equipment Corporation
(DEC), chose to configure each computer to the customer’s
individual needs. That created a major design challenge because
that lack of well-established standards at the time meant that
each choice of component impacted what other components
could be used. The problem was less one of figuring out what
local maxima to choose (a ruggedness problem). Rather, it was
finding any combination that met the requirements of the
customer and the associated constraints of the components.

By 1980, the individuals designing each system were
experiencing such a high error rate (> 60%) that DEC was
considering abandoning its customization strategy. Eventually,
however, they solved the problem by developing an expert
system (XCON) that employed the same rules used by
designers but did not make errors. Within three years the system
incorporated over 4000 design rules and was 98% accurate in its
configuration.

4.2 Design and Ruggedness
The presence of ruggedness in the design task occurs where
features of possible design end states interact so strongly that
the desirability (fitness) of a particular feature cannot be
considered independent of the other features present.

Numerous examples of high ruggedness combined with limited
path entropy and unfamiliarity can be found in the arts.
Paintings and musical compositions, for example, have
numerous interactions between elements of the piece (e.g.,
Would the Mona Lisa still be a masterpiece if Da Vinci has
chosen to paint her eyes with different colors?) and yet the
mechanics of creation are relatively straightforward (low path
entropy).

For an IT-related example, we might choose a consumer
technology such as designing cellular phones. Depending on the
specific consumer’s needs, design attributes such as small size,
wealth of features, physical and/or virtual keypad, data
capabilities, variety of protocols supported and carrier might all
be considered either advantages or disadvantages. Presuming
that most combinations are technically feasible, the design
challenge then becomes to identify possible combinations that
meet the needs of as large a market segment as possible. The
designer that comes up with a unique high fitness combination
hits a home run.

The challenge presented by ruggedness is that of ensuring
sufficient and efficient search. In this context, expertise is a
mixed blessing. It we consider the search process as being one
of generating possible combinations and then assessing their
fitness, psychological studies of games such as chess suggest
that a major component of expertise involves unconsciously
filtering the number of unfeasible combinations, such as poor
chess moves, considered [3]. While this increases the time
available for considering sensible options, it also means that
outliers or radical new combinations may be filtered as well.
This phenomenon is also referred to as expert entrenchment [4].

High ruggedness in the design space also means that designs
that are “nearly right” combinations can exhibit relatively low
fitness. As a consequence, we would expect that when a
successful combination is created by one designer, it will tend
to be copied.

A more realistic design scenario for most engineering and IT
situations is one where both ruggedness and path entropy are
high. Here, the challenge is that setting a high fitness end state
as a goal may entail unmanageable path entropy. On the other
hand, selecting a well-travelled path may lead to a low fitness
end state. As a consequence, maintaining acceptable fitness
while meeting the design constraints is likely to demand a
continual balancing act.

The numerous attempts to create a successful tablet device can
be viewed as an IT-based example of the rugged, high path

entropy design task. Finding an acceptable combination of form
and function has proven to be an elusive goal. Apple’s Newton
was unable to make a dent in the market, largely failing to meet
performance expectations. Moving towards smaller form
factors, PDA devices were popular for a while, until rendered
largely obsolete by cellular phones. Moving in the direction of
larger form factor and greater functionality, Microsoft’s Tablet
PC was an attempt to graft the existing Windows architecture
on to a tablet form factor. While the design proved to be highly
fit for a small set of users [5], it never caught on as expected.
eBook readers, such as Amazon’s Kindle began to gain
substantial attention by bundling cellular technology with an
intermediate form factor and integrated marketplace. They
were, however, single purpose devices. The first tablet that
achieved breakout status with its features, capabilities, form
factor and elegance was Apple’s iPad.

The reasoning approach that seems particularly well suited to
high ruggedness/high path entropy design tasks referred to as
effectuation. Unlike the goal-drive decision rules of pure high
path entropy task or the generate and test approach governing
the pure high ruggedness task, effectual reasoning involves a
constant shifting between goals and actions. Specifically, it is
built around constructing the novel from the resources available.
It is also the reasoning approach that is most commonly applied
by entrepreneurs [13]. Effectuation-based design reasoning is
also likely to produce user-modifiable artifacts, since such
capability will facilitate the design process, ultimately
increasing their flexibility.

Figure 2: Reasoning approaches and design task
complexity

In summary, the reasoning approaches combinations of
ruggedness and path entropy are illustrated in Figure 2. To
complete the picture, we need to consider the final complexity
dimension: unfamiliarity.

4.3 Design and Unfamiliarity

Unfamiliarity typically corresponds to reducible uncertainty—
or at least being able to assess what uncertainty is and is not
reducible based upon current knowledge.

The key design tool for reducing uncertainty is the intermediate
design artifact. These artifacts may be used for many, purposes.
These include testing concepts (e.g., a test module), conserving
working memory (e.g., diagrams), communicating between
members of a design team or users (e.g., a model or prototype)
and analysis (e.g., a project plan).

The types of artifacts that will dominate the design process are
likely to depend upon the nature of the unfamiliarity. The
mapping proposed in this paper is presented as the top layer of
Figure 3.

For the trivial case, low path entropy, low ruggedness design
projects, a prototype that evolves into a final project may be all
that is needed; alternatively, a set of blueprints may be
sufficient to reduce unfamiliarity without the need for any test
artifacts.

Figure 3: Three dimensions of design task complexity

Where ruggedness is high and path entropy is low, we can
expect the design artifacts to rely heavily on use cases (so that
the fitness of different combinations of attributes can be
assessed in terms of user needs) and models of various sorts to
provide a more concrete experience for potential users assessing
the design. Such models are frequently seen in high ruggedness
fields such as architecture and automotive design (e.g., concept
cars).

Where path entropy is high but ruggedness is low, we can
expect artifacts to depend heavily on specifications and
planning. Since the desired end state is well understood for such
design problems, we would expect many of the tools for project
management as well as specification approaches such as UML
to be effective in clarifying what needs to be done.

The case where all three dimensions of task complexity are high
constitutes the truly “wicked” design problem. Any
specification artifacts created are likely to need continuous
modification. Use cases, while attractive in theory, may often
lead to insoluble problems. A category of approaches that seem
particularly well suited to high ruggedness/high path entropy
design tasks fall under the heading agile methods. These
methods involve continuous interaction between the users of a
design and the builders of an artifact. Typical of these methods
is the scrum approach to project management, where a low
feature version of the design is constructed as quickly as
possible and functionality is incrementally added while keeping
a version of the design working nearly continuously.

5. CONCLUSIONS

Many individuals will argue that design is not and cannot be a
science. While we are inclined to agree that design science will
never resemble physics, we believe there is still room to attempt
to construct conceptual schemes that allow the designer and
manager of designers to think about what they are doing more

systematically. The framework presented in this paper offers a
conceptual scheme that can be used to map a particular design
task’s complexity to the reasoning approaches and types of
artifacts that seem are likely to be most productive. Before
being applied to any mission-critical design project, it would
definitely benefit from thorough empirical testing. We are
optimistic that such testing will, in time, support a number of
the proposition we have made, since what the framework we
propose is grounded in many well researched studies of task
complexity.

6. REFERENCES

[1] Campbell, D.J. (1988), Task complexity: A review and

analysis. Academy of Management Review, 13(1), 40-52.
[2] Card, S.K., Moran, T.P. & Newell, A. (1983). The

psychology of human-computer interaction. Hillsdale NJ:
Earlbaum.

[3] Charness, N. (1991). Knowledge and search in chess. In K.
A. Ericsson & J. Smith (Eds.), Towards a general theory of
expertise: Prospects and limits (pp. 39-63). Cambridge,
U.K.: Cambridge University Press.

[4] Dane, E. (2010), Reconsidering the trade-off between
expertise and flexibility: A cognitive entrenchment
perspective, Academy of Management Review, 35(4), 579-
603.

[5] Gill, T.G. (2007), Using the Tablet PC for instruction”.
Decision Sciences Journal of Innovative Education. 5(1),
183-190.

[6] Gill, T.G. (2010), Informing business: research and
education on a rugged landscape, Santa Rosa, CA:
Informing Science Press.

[7] Gill, T.G. & Hevner, A. (2011), A fitness-utility model for
design science research, DESRIST 2011.

[8] Gill, T.G. & Hicks, R. (2006), Task complexity and the
informing sciences: A synthesis, Informing Science, 9. 1-
30.

[9] Hevner, A., March, S., Park, J. & Ram, S. (2004), Design
science in information systems research. MIS Quarterly.
28(1), 75-106.

[10] Kauffman, S.A. (1993). The origins of order, Oxford, UK:
Oxford University Press.

[11] Li, M. and Vitányi, P., (1997), An introduction to
Kolmogorov complexity and its applications, New York,
NY: Springer.

[12] McCabe, T.J. (1976), A complexity measure, IEEE
Transactions on Software Engineering, SE-2(4), 308-320.

[13] Sarasvathy, S.D. (2003), Entrepreneurship as a science of
the artificial, Journal of Economic Psychology 24, 203–
220.

[14] Willingham, D.T. (2009). Why don’t students like school?
San Francisco, CA: Jossey Bass.

[15] Wood, R. (1986). Task complexity: Definition of the
construct. Organizational Behavior and Human Decision
Processes. 37. 60-82.

