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ABSTRACT 

 
Design problems manifest themselves in many ways. Before 
anything resembling a true “science of design” can emerge, 
tools for classifying the design task must be developed. One 
such tool involves the task complexity construct, which comes 
in three distinct forms: objective complexity, problem space 
complexity and lack of structure. These forms, which can 
appear individually or in combination, each demand different 
approaches to the design task. Objective complexity entails a 
process dominated by search. Problem space complexity is 
often addressed by the accumulation of design rules. Lack of 
structure can benefit from the creation of different types of 
models. This paper describes the task complexity construct and 
explores—using a mix of theory and examples—its relationship 
to design.    
 
Keywords: Task complexity, design science, goal setting, 
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1. INTRODUCTION 
 
Design science is the emerging field that attempts to develop 
systematic rules and theories that can be applied to the design 
process. Design problems manifest themselves in many forms. 
These forms can range from highly artistic to highly technical, 
or both. They may be tightly constrained or unconstrained. It 
may be easy to recognize the strength of a given design, but for 
other designs, the fitness of the design may be highly uncertain. 
It therefore seems unlikely that any universal design principles 
will be discovered that apply equally to all design situations. 
Instead, to advance the field we must first focus of developing 
schemes for classifying and differentiating design tasks in a way 
that allows different approaches to be prescribed for different 
tasks. 
 
One such classification scheme that offers plausible benefits is 
based upon the task complexity construct. In recent years, 
considerable progress has been made in distinguishing different 
types of complexity [8].  The present paper introduces three 
broad classes of task complexity definitions that have appeared 
in the research literature. Using examples, it then examines how 
each class leads to different design challenges and how those 
challenges may be resolved. Finally, it synthesizes these 

findings into a unified scheme for classifying design tasks. 
While no scheme of this type can fully determine the “best” 
design approach, we believe it represents a promising start. 
  

2. TASK COMPLEXITY 
 
Task complexity is a construct that, in the broadest terms, 
attempts to explain how the characteristics of a task impact the 
cognitive demands placed upon the task performer. The 
construct is most commonly applied in the fields of  
management and psychology and the most commonly 
referenced attempts to define the term are more than two 
decades old [1][15]. 
 
One aspect of task complexity that makes it particularly 
problematic is the myriad ways in which it has been defined. A 
recent study found 13 distinct definitions [8] that fell into 5 
general classes: 
 
1. Complexity as source of difficulty 
2. Complexity as a source of information processing 

requirements 
3. Complexity resulting from lack of task structure 
4. Complexity as a measure of problem space characteristics 

(e.g., number of paths, amount of required knowledge) 
5. Complexity as an objective function of task characteristics 

(e.g., number of task elements, degree of interrelationship 
between elements, dynamics of task objectives) 

 
Because (1) and (2) are presumed consequences of complexity, 
while (3) and (4) are antecedents, these classes can be further 
simplified into three dimensions [6]: 
 
I. Objective Complexity 
 Elements, Interrelationships, Dynamics  
  Complexity  Ruggedness 

II. Problem Space Complexity 
Problem Space Characteristics  

  Complexity  Information Processing 

III. Unfamiliarity 
Lack of Structure  
 Complexity  Perceived Difficulty 

 



The term ruggedness, presented as the consequence of objective 
complexity, draws upon the concept of a fitness landscape, 
introduced in evolutionary biology [10]. This form of 
complexity occurs when a task involves many attributes that 
interrelate, leading to a large possible solution space with many 
local peaks. A good example of this is the recipes in a 

cookbook, which can be viewed as mapping between 
ingredients and fitness outcomes such as taste and/or nutrition. 
In theory, at least, each recipe represents the author’s local 
peak. Typical of this complexity, the contribution of an 
individual ingredient to that fitness is relatively meaningless, 
since a recipe’s overall fitness is the result of the interaction 

between all the ingredients, as well as other actions (e.g., how 
they are mixed, cooking times, temperatures). 
 
Problem space complexity views complexity in terms of the 
characteristics of the task-specific knowledge being applied by 
the task performer. Many of these characteristics would be 
familiar to computer scientists as metrics used to estimate the 
complexity of a computer program, such as number of paths 
(cyclomatic complexity [12]), amount of knowledge (e.g., lines 
of code, number of rules) or some theoretical minimum 
program size (e.g., Kolmogorov complexity [11]). In general, 
we would expect information processing rates to grow with 
accumulating knowledge, although such a relationship is better 
viewed as approximate than definitional. 
 
Unfamiliarity is, in many respects, nearly the opposite of 
problem space complexity since it represents the absence of 
task-specific knowledge. For unfamiliar tasks, we are forced to 
rely on general knowledge and unreliable techniques such as 
analogy. Because these unfamiliar processes tend to place heavy 
loads on working memory [14], they tend to be perceived as 
difficult by the task performer. Once again, this relationship 
between unfamiliarity and difficulty is imperfect, but tends to 
hold true more often than not. 
 

3. THE DESIGN TASK 
 
Before considering the impact of task complexity on design, it 
is useful to define what we mean by “the design task”. As 
illustrated in Figure 1, we treat the task as having three principal 
elements, two in the environment and one in the mind of the 
designer: 
 
1. A design fitness landscape, which maps the characteristics 

of the design into a design fitness value. 
2. Artifacts developed by the designer.  
3. A problem space that the designer uses to perform the 

design task. 
 
Naturally, where a design task is beyond the capabilities of a 
single designer, the problem space may need to span multiple 
individuals. 

 
Figure 1: Overview of design task 

 
3.1 Design Fitness Landscape 
The design fitness landscape maps design attributes, such as 
size, functionality, reliability, and so forth into a “fitness” value. 
As discussed elsewhere [7], what constitutes fitness can vary 
considerably. Its most direct translation might be to a metric 
such as immediate usefulness. On the other hand, it might also 
represent the likelihood that the design will diffuse, inspire 
other designs (reproduce) and evolve over time, a form more in 
line with the evolutionary concept of fitness. 
 
The design fitness landscape can be characterized in terms of its 
ruggedness, linking it to objective complexity. On a rugged 
design landscape, many local maxima exist for different values 
of design attributes. By virtue of the string interaction between 
these attributes, we can also see very sharp jumps or drop-offs 
in fitness with small incremental changes. To return to the 
recipe analogy, think what happens to the resulting cake when 
you accidentally omit the ½ teaspoon of baking power called for 
by the recipe. 
 
3.2 Artifacts 
Within the design task, we treat artifacts in the most general 
way, consistent with design science research [9]. Thus, artifacts 
consist not only of the end products of a design process but also 
all the intermediate products. The latter group could include 
plans, design documents, communications between designers, 
prototypes, and so forth. These intermediate artifacts provide 
both a means of conserving working memory within the 
designer’s problem space and a means of communicating design 
information to other stakeholders in the design process. 
 
3.3 Problem Space 
The problem space describes the internal representation within 
the mind of a designer (although, as mentioned earlier, 
collaboration between multiple individual designer problem 
spaces might have to be taken into account “real world” tasks). 
It is assumed to contain a representation of the problem within a 
state space, operators for transforming the state space, 
constraints that prevent inappropriate states and search control 
knowledge [2]. 
We refer to a series of transitions through the problem space as 
a path. To provide a term comparable to ruggedness and 
unfamiliarity, we describe the high complexity case as high 
path entropy. The choice of entropy here is meant to convey the 
qualitative sense that the most challenging design problem 
spaces are those where: 
 
• Uncertainty: Considerable uncertainty exists in the choice 

of paths based on existing task performer knowledge. 
• Constraints: Many paths exist that do not lead to the 

intended design end state. 
• Irreversibility: Operators, once applied, are irreversible or 

costly to reverse 
 
It should be emphasized that because problem space complexity 
exists within the mind of the task performer, new knowledge 



may change the problem space in a manner that reduces the path 
entropy associated with a particular task. For example, imagine 
you are attempting to navigate between two locations in a city 
laid out in a grid (such as Manhattan) using only your position. 
In this case, any turn that brings you closer in distance to your 
destination will generally be a suitable path. Thus, while many 
path choices are available, the path entropy is low. Now 
consider how the task changes for a city laid out haphazardly 
(such as Boston). For such a city, many turns that appear to 
bring you closer in distance to the desired destination will, in 
fact, prove to be poor choices as a result of curves, dead ends 
and one-way streets. This is the high path entropy case. That 
high entropy is not intrinsic to the task, however. Rather, it is a 
function of your internal representation of the task. In the highly 
improbably event that you could find someone in Boston who 
was willing to give you accurate directions, the path entropy 
would drop since you would now know what choice to make at 
every turn. 
 
It is also possible, of course, for a task to include uncertainty 
that is irreducible. No matter how good a solitaire player you 
are, some deals simply cannot lead to a successful outcome. 
This type of uncertainty could well be considered part of 
objective complexity. The problem is, outside of games of 
chance, it is often hard to tell what uncertainty is reducible and 
what is not. Thus, it generally makes sense to treat both forms 
as sources of path entropy within the problem space.  
 

4. COMPLEXITY OF THE DESIGN TASK 
 
Having described both the sources of task complexity and the 
nature of the design task, we can now turn to the key objective 
of this paper and consider the complexity of the design task. We 
do this considering at each of the three task complexity 
dimensions. 
 
4.1 Design and Path Entropy 
The presence of path entropy in the design tasks implies that no 
matter how clearly specified your design end state may be, and 
how great your familiarity with the task, achieving the intended 
goal will require considerable attention and care. 
 
As an example, consider the contrast between how computers 
are configured today versus the situation that existed in the late 
1970s. Today, the “designer” might be a customer who logs into 
a web site (such as Dell), chooses a model and then selects or 
deselects a series of options. For the most part, options do not 
interact in complex ways to determine fitness (e.g., a large disk 
drive is better than a small one, more RAM is better than less, 
faster processors are better than slower ones). Thus, the task of 
“designing” the system has become trivial and can be solved 
with a simple template. Many would not consider it design 
science at all [9]. 
 
In the late 1970s, however, the situation was very different. 
Some companies, such as Digital Equipment Corporation 
(DEC), chose to configure each computer to the customer’s 
individual needs. That created a major design challenge because 
that lack of well-established standards at the time meant that 
each choice of component impacted what other components 
could be used. The problem was less one of figuring out what 
local maxima to choose (a ruggedness problem). Rather, it was 
finding any combination that met the requirements of the 
customer and the associated constraints of the components. 
 

By 1980, the individuals designing each system were 
experiencing such a high error rate (> 60%) that DEC was 
considering abandoning its customization strategy. Eventually, 
however, they solved the problem by developing an expert 
system (XCON) that employed the same rules used by 
designers but did not make errors. Within three years the system 
incorporated over 4000 design rules and was 98% accurate in its 
configuration. 
 
4.2 Design and Ruggedness 
The presence of ruggedness in the design task occurs where 
features of possible design end states interact so strongly that 
the desirability (fitness) of a particular feature cannot be 
considered independent of the other features present. 
 
Numerous examples of high ruggedness combined with limited 
path entropy and unfamiliarity can be found in the arts. 
Paintings and musical compositions, for example, have 
numerous interactions between elements of the piece (e.g., 
Would the Mona Lisa still be a masterpiece if Da Vinci has 
chosen to paint her eyes with different colors?) and yet the 
mechanics of creation are relatively straightforward (low path 
entropy). 
 
For an IT-related example, we might choose a consumer 
technology such as designing cellular phones. Depending on the 
specific consumer’s needs, design attributes such as small size, 
wealth of features, physical and/or virtual keypad, data 
capabilities, variety of protocols supported and carrier might all 
be considered either advantages or disadvantages. Presuming 
that most combinations are technically feasible, the design 
challenge then becomes to identify possible combinations that 
meet the needs of as large a market segment as possible. The 
designer that comes up with a unique high fitness combination 
hits a home run. 
 
The challenge presented by ruggedness is that of ensuring 
sufficient and efficient search. In this context, expertise is a 
mixed blessing. It we consider the search process as being one 
of generating possible combinations and then assessing their 
fitness, psychological studies of games such as chess suggest 
that a major component of expertise involves unconsciously 
filtering the number of unfeasible combinations, such as poor 
chess moves, considered [3]. While this increases the time 
available for considering sensible options, it also means that 
outliers or radical new combinations may be filtered as well. 
This phenomenon is also referred to as expert entrenchment [4]. 
 
High ruggedness in the design space also means that designs 
that are “nearly right” combinations can exhibit relatively low 
fitness. As a consequence, we would expect that when a 
successful combination is created by one designer, it will tend 
to be copied. 
 
A more realistic design scenario for most engineering and IT 
situations is one where both ruggedness and path entropy are 
high. Here, the challenge is that setting a high fitness end state 
as a goal may entail unmanageable path entropy. On the other 
hand, selecting a well-travelled path may lead to a low fitness 
end state. As a consequence, maintaining acceptable fitness 
while meeting the design constraints is likely to demand a 
continual balancing act. 
 
The numerous attempts to create a successful tablet device can 
be viewed as an IT-based example of the rugged, high path 



entropy design task. Finding an acceptable combination of form 
and function has proven to be an elusive goal. Apple’s Newton 
was unable to make a dent in the market, largely failing to meet 
performance expectations. Moving towards smaller form 
factors, PDA devices were popular for a while, until rendered 
largely obsolete by cellular phones. Moving in the direction of 
larger form factor and greater functionality, Microsoft’s Tablet 
PC was an attempt to graft the existing Windows architecture 
on to a tablet form factor. While the design proved to be highly 
fit for a small set of users [5], it never caught on as expected. 
eBook readers, such as Amazon’s Kindle began to gain 
substantial attention by bundling cellular technology with an 
intermediate form factor and integrated marketplace. They 
were, however, single purpose devices. The first tablet that 
achieved breakout status with its features, capabilities, form 
factor and elegance was Apple’s iPad. 
 
The reasoning approach that seems particularly well suited to 
high ruggedness/high path entropy design tasks referred to as 
effectuation. Unlike the goal-drive decision rules of pure high 
path entropy task or the generate and test approach governing 
the pure high ruggedness task, effectual reasoning involves a 
constant shifting between goals and actions. Specifically, it is 
built around constructing the novel from the resources available. 
It is also the reasoning approach that is most commonly applied 
by entrepreneurs [13]. Effectuation-based design reasoning is 
also likely to produce user-modifiable artifacts, since such 
capability will facilitate the design process, ultimately 
increasing their flexibility. 
 

 
Figure 2: Reasoning approaches and design task 
complexity 
 
In summary, the reasoning approaches combinations of 
ruggedness and path entropy are illustrated in Figure 2. To 
complete the picture, we need to consider the final complexity 
dimension: unfamiliarity. 
 
4.3 Design and Unfamiliarity 
 
Unfamiliarity typically corresponds to reducible uncertainty—
or at least being able to assess what uncertainty is and is not 
reducible based upon current knowledge. 
 
The key design tool for reducing uncertainty is the intermediate 
design artifact. These artifacts may be used for many, purposes. 
These include testing concepts (e.g., a test module), conserving 
working memory (e.g., diagrams), communicating between 
members of a design team or users (e.g., a model or prototype) 
and analysis (e.g., a project plan).  
 

The types of artifacts that will dominate the design process are 
likely to depend upon the nature of the unfamiliarity. The 
mapping proposed in this paper is presented as the top layer of 
Figure 3. 
 
For the trivial case, low path entropy, low ruggedness design 
projects, a prototype that evolves into a final project may be all 
that is needed; alternatively, a set of blueprints may be 
sufficient to reduce unfamiliarity without the need for any test 
artifacts. 

 
Figure 3: Three dimensions of design task complexity 
  
Where ruggedness is high and path entropy is low, we can 
expect the design artifacts to rely heavily on use cases (so that 
the fitness of different combinations of attributes can be 
assessed in terms of user needs) and models of various sorts to 
provide a more concrete experience for potential users assessing 
the design. Such models are frequently seen in high ruggedness 
fields such as architecture and automotive design (e.g., concept 
cars). 
 
Where path entropy is high but ruggedness is low, we can 
expect artifacts to depend heavily on specifications and 
planning. Since the desired end state is well understood for such 
design problems, we would expect many of the tools for project 
management as well as specification approaches such as UML 
to be effective in clarifying what needs to be done. 
 
The case where all three dimensions of task complexity are high 
constitutes the truly “wicked” design problem. Any 
specification artifacts created are likely to need continuous 
modification. Use cases, while attractive in theory, may often 
lead to insoluble problems. A category of approaches that seem 
particularly well suited to high ruggedness/high path entropy 
design tasks fall under the heading agile methods. These 
methods involve continuous interaction between the users of a 
design and the builders of an artifact. Typical of these methods 
is the scrum approach to project management, where a low 
feature version of the design is constructed as quickly as 
possible and functionality is incrementally added while keeping 
a version of the design working nearly continuously.  
 

5. CONCLUSIONS 
 
Many individuals will argue that design is not and cannot be a 
science. While we are inclined to agree that design science will 
never resemble physics, we believe there is still room to attempt 
to construct conceptual schemes that allow the designer and 
manager of designers to think about what they are doing more 



systematically. The framework presented in this paper offers a 
conceptual scheme that can be used to map a particular design 
task’s complexity to the reasoning approaches and types of 
artifacts that seem are likely to be most productive. Before 
being applied to any mission-critical design project, it would 
definitely benefit from thorough empirical testing. We are 
optimistic that such testing will, in time, support a number of 
the proposition we have made, since what the framework we 
propose is grounded in many well researched studies of task 
complexity. 
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