
150 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 1, FEBRUARY 2005

Learning C++ “Submarine Style”: A Case Study
T. Grandon Gill

Abstract—This case study describes a successful introductory
course in C++ with a design that draws extensively upon techniques
used in the training of nuclear submarine personnel. Techniques
adopted include emphasis on completion of practical exercises as
opposed to concept mastery, self-paced learning based on exten-
sive materials prepared for the course, use of oral examinations to
validate student achievement, use of undergraduate teaching as-
sistants to assist and examine students, and a strong peer-learning
focus with group collaboration being actively encouraged. Over the
two-year period during which the course evolved, substantial in-
creases in completion rates and the amount of material that is cov-
ered have been experienced. In addition, certain elements of the
course design—particularly the emphasis on group work, use of
online support, and use of “state-of-the-art” tools—seem more con-
sistent with current programming practice than the conventional
programming course, emphasizing lectures and completion of in-
dividual assignments.

Index Terms—Group learning, introductory programming,
management information systems (MIS), peer learning, self-paced
instruction, undergraduate.

I. INTRODUCTION

THERE is a wide gulf between how programming lan-
guages are most commonly taught and how they are

most commonly applied in industry [1]. In many programming
courses, the emphasis is on individual students writing small
stand-alone programs using a generic development environ-
ment. The commercial programmer, in contrast, works in
collaboration with other programmers, makes extensive use
of existing code bases, and employs a complex, feature-rich,
integrated development environment (IDE). This disparity
is particularly troubling in management information system
(MIS) programs, where a student’s exposure to programming
may be limited to a course or two.

In this paper, an alternative approach to teaching introduc-
tory programming is presented in the form of a case study of an
introductory C++ programming course taught to undergraduate
MIS majors at a large state university. The course evolved over
a five-year period and differs from the traditional introductory
programming course in a number of ways.

1) Group participation in completing all assignments is ac-
tively encouraged.

2) Students build assignments to specification, integrating an
existing code base with their own code.

3) All programming is performed using the most current ver-
sion of the world’s most widely used IDE, Microsoft Vi-
sual Studio .NET.

Manuscript received December 19, 2003; revised May 26, 2004.
The author is with the Information Systems and Decision Sciences Depart-

ment, University of South Florida, Tampa, FL 33620 USA.
Digital Object Identifier 10.1109/TE.2004.837044

4) Traditional testing has been eliminated in favor of highly
focused assignment validation examinations.

The transformation of this course was modeled on the process
used by the U.S. Navy to qualify its nuclear-trained submarine
personnel. The paper first examines the training techniques em-
ployed by the nuclear submarine force. The design of the course
and how submarine techniques have been incorporated into it
are then presented. Finally, some outcome results of teaching
the course are examined, and potential implications for other
courses are discussed.

II. NUCLEAR SUBMARINE TRAINING

For decades, the U.S. Navy’s nuclear training program has
had a reputation for producing individuals—both enlisted and
officers—of unparalleled quality in an environment of extraor-
dinary technological complexity. To qualify to stand watch on a
nuclear propulsion plant, an individual must demonstrate both
a solid understanding of nuclear engineering theory and a mas-
tery of the details of the specific propulsion plant—such as the
physical location and function of literally thousands of valves,
switches, gauges, and instrumentation displays.

Nuclear training begins with six months of nuclear power
school, a classroom-oriented program intended to introduce stu-
dents to relevant theory in the areas of physics, chemistry, ther-
modynamics, and engineering. Although more intense in its de-
mands, course content and teaching approaches used during this
phase are fairly similar to what might be seen in a typical col-
lege science course.

The second phase of nuclear training, used as the model for
the course discussed in this paper, is known as the prototype
phase. During their six months at prototype, officers and en-
listed personnel train side by side on an actual nuclear propul-
sion plant. The training proceeds in manner listed hereafter.

• After a short period of classroom orientation to the
specifics of the plant, students are given a detailed outline
of the knowledge they must acquire and a multipage
document (known as a qualification card or “qual card”)
with spaces for hundreds of signatures. Each signature
represents either the satisfactory completion of an oral
examination on a specific topic or the supervised perfor-
mance of a practical task, such as standing a watch at a
specific workstation.

• To acquire knowledge-based signatures, students use the
outline and specially developed training manuals to pre-
pare for their exam. When the student believes he1 is pre-
pared, he seeks out a qualified watchstander—normally a
nuclear-trained sailor or officer assigned to the prototype
for a tour of duty—who administers an oral examination.

1Currently, only men are assigned to nuclear submarines.

0018-9359/$20.00 © 2005 IEEE

GILL: LEARNING C++ “SUBMARINE STYLE”: A CASE STUDY 151

If the student passes, he receives a signature. If not, he
must further prepare and take the exam again.

• Certain signatures require that the student demonstrate
proficiency at a particular task, such as operating a spe-
cific piece of equipment or performing a particular chem-
ical test. For these signatures, the student typically prac-
tices with one or more qualified watchstanders and then
submits to an examination when he (and the watchstander)
believes his proficiency is sufficient.

• Once all required signatures for a given watchstation
have been acquired, the student becomes “qualified” to
stand that watch. A student graduates from prototype
by qualifying on all watchstations required by his rank
and specialty (e.g., an officer would have a different set
of requirements from those of an enlisted engineering
laboratory technician). Those finishing early sometimes
qualify on additional watch stations.

Upon completing prototype, the student’s next stop is nor-
mally a short submarine school (although some are assigned to
surface ships as well). Sub school focuses on the nonnuclear
requirements of the submarine duty; upon completion, the stu-
dent is assigned to his first submarine. Upon reporting for duty,
he must then repeat the entire qualification process. The sub-
marine qual card—similar to the one used by the student in
prototype—includes requirements for both nuclear and nonnu-
clear signatures. The process for obtaining these signatures is,
effectively, identical to the process used in prototype. The final
signature on the card typically involves completion of a gen-
eral oral examination administered by the captain of the ship.
Once a crew member has obtained all signatures on the cards,
he is “qualified” in submarines and is authorized to wear dol-
phins—the emblem of the U.S. submarine force—on his uni-
form. The submarine qualification process normally takes a year
to 18 months, measured from the time the crew member first re-
ports to the submarine.

The process through which submariners are trained is un-
usual in many ways. Most remarkable, perhaps, is that peers
(as opposed to formally trained educators or academics) con-
duct nearly all training. A number of factors enable this process.
First, a strong sense of community—driven by common pur-
pose and mutual dependence—permeates the submarine force.
Standards are high because every person on a submarine has a
job that is critical; a single valve out of place or instrumenta-
tion reading ignored could lead to the loss of the ship. Second,
there is a history of shared experience. Crew members admin-
istering oral examinations understand what these examinations
need to accomplish because they have been through the same
process themselves. Indeed, every time a submariner transfers
to another ship, he must requalify on all relevant watchstations
(although an abbreviated version of the qual card is normally
used for senior personnel).

Some strong parallels exist between the job of a nuclear
submariner and that of a professional programmer. Like today’s
programmers, nuclear submariners perform their jobs in a
highly complex technical environment, must work effectively
with their peers if they are to accomplish their jobs, are highly
focused on quality, and are constrained by requirements of
security and organizational procedures that must be followed.

The recognition of these parallels led to the design of the
programming course that will now be discussed.

III. COURSE DESIGN

The course described in this paper is an introductory pro-
gramming course, taught using C++. It is the first of a seven-
course sequence that constitutes an undergraduate MIS major
offered within a college of business at a large state university.
Being offered as part of an MIS program, rather than a computer
science program, impacts its design in some important ways,
listed hereafter.

• Because students were unlikely to have subsequent
courses in hardware or software architectures, C/C++
was chosen as an initial language, allowing a number
of low-level concepts to be introduced (e.g., addressing,
memory organization and representation).

• Because students in MIS programs tend to be employ-
ment-driven, rather than research-driven, the MS Visual
Studio .NET tool—used by over 50% of all commercial
developers [2]—was chosen in place of less complex tools
that are easier to master.

• Because most MIS majors do not, ultimately, end up in
careers as programmers, the ability to interpret and work
with complex code was deemed to be more critical than
the ability to write such code from scratch.

• Employers of MIS majors repeatedly emphasized the im-
portance of teamwork skills. Thus, activities demanding
individual program development, conducted in isolation,
were deemphasized.

The challenges associated with incorporating objectives such
as these into any programming course have been noted by a
number of researchers and educators [1], [3], [4]. As a former
submarine officer, however, the course designer felt that a
number of the techniques he had encountered during his own
submarine training could be applied to help achieve them.

The course was organized around seven assignments. Suc-
cessful completion of the course depended entirely upon perfor-
mance on these assignments, making them analogous to watch-
station qualifications in the submarine program. Assignments
could be prepared individually or in groups, with collaboration
being encouraged. To get credit for an assignment, however,
each student had to pass a validation examination, administered
individually. This step was analogous to getting signatures on a
qual card. The nature of the validation exam depended upon the
nature of the assignment, as shown in the following examples.

• For pencil and paper assignments (e.g., numbering sys-
tems or interpreting data in memory), the instructor de-
veloped automated test generation software that created
tests in a format that could be uploaded to the university’s
online course delivery system (Blackboard). These exams
were then administered in a computer laboratory, super-
vised by teaching assistants (TAs). The score required to
“validate” the assignment was curved according to the as-
signment grade. For example, a perfect assignment grade
would require at least an 80% score before the assignment
was validated, whereas a 75% raw score required only a

152 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 1, FEBRUARY 2005

60% exam score. Students could take the validation exams
again should they fail to achieve the necessary score.

• For proficiency exercises, such as an exercise in using the
MS Visual Studio.NET debugger, students were required
to recreate the assignment individually and gather relevant
screen captures in the computer laboratory, proctored by
TAs.

• For programming exercises, each student had to pass a
one-on-one oral examination on the code he or she sub-
mitted (either individually or as part of a group). Initial
oral exams were administered by TAs or the instructor.
The course instructor administered all exams that were
taken more than once.

Until a student validated an assignment, it was not entered into
the course grade book, which was maintained online. Thus, an
assignment pending validation was equivalent to an assignment
that was never submitted.

The oral exams used to validate assignments were closely
modeled after the corresponding exams administered in the
submarine program. Their emphasis was on having the student
demonstrate complete understanding of the code that he or she
submitted, without involving any memorization. During the
exam, the instructor/TA and the student both looked at the same
block of code, and questions were posed, such as “What would
happen if this line of code were removed?” or “What would
the value of this variable be at the end of this block given the
following inputs to the function…?” Only complete mastery of
the code led to a pass; anything less required taking the exam
again with the instructor on a subsequent date.

As part of the assignment-centered course design, traditional
lectures were deemphasized. In their place, the instructor de-
veloped an extensive set of training materials, including a text-
book, specifically designed to aid students in understanding and
preparing assignments. In addition to the textbook, materials in-
cluded software developed specifically for the course (e.g., a
Windows-based graphic flowcharting tool that generated C++
code from student-created flowcharts), source code to be incor-
porated in assignments (with executable versions of complete
assignments), and over 17 hours of multimedia clips that walked
the students through code examples in MS Visual Studio .NET.
Students tended to use these materials in a highly focused way,
understandably spending the bulk of their time on those seg-
ments most directly related to assignment completion. These
materials served a role similar to that of the training materials
prepared by the Navy. They have also recently been packaged
for students and instructors in textbook form [5].

Analogous to the submarine program, students were given
considerable flexibility in how they fulfilled course require-
ments. The 75-minute weekly lectures were effectively optional
(since attendance was not taken); and parallel versions, opti-
mized for Web-based delivery, were also provided and could
be downloaded 24 hours a day. Students could also choose to
attend scheduled laboratory sessions, sprinkled throughout the
week. Some of these sessions included step-by-step discussions
of material related to the assignments. Others were much more
informal, such as a TAs setting up office hours in an open
laboratory and students dropping by with questions. Although
due dates for each assignment were specified, a lenient policy

for late assignments was established (10% of the maximum
assignment grade deducted for each week an assignment was
late).

The use of TAs in the course also closely paralleled the use
of instructors during nuclear prototype training. All TAs were
undergraduates, recruited from the pool of students who had re-
cently taken the course. They provided one-on-one or one-on-
group assistance to any student(s) who asked for it. They graded
assignments and could administer first-try oral exams on all pro-
gramming assignments. They also “stood watch” in the labora-
tory and proctored all laboratory-based validation exams.

One of the few aspects of course design that did not have
roots in the submarine training model was its heavy reliance on
the Blackboard course content delivery system. In addition to
its obvious use in disseminating course materials (including on-
line versions of the weekly lectures), the tool was used to keep
track of student grades, administer automated validation exams,
schedule oral exams, and—most important—serve as the infra-
structure for online discussion groups that were set up for each
assignment. In these discussion groups, students posted ques-
tions, anonymously if desired, relating to assignments or course
policies. The instructors and all TAs monitored these boards reg-
ularly; therefore, median response times to student posts tended
to be short (during 2002, the median response time was about
one hour). Students could post questions relating to any aspect
of an assignment and were also allowed to post code with which
they were having problems. For larger assignments, several hun-
dred postings are commonplace. Students were also encouraged
to reply to the posts of their peers, with the active involvement
in discussion groups being a principal technique for identifying
potential TAs.

IV. COURSE RESULTS

Over the past three years, a number of quantitative and quali-
tative indicators have supported the efficacy of the “submarine”
approach to teaching introductory programming. The evidence
comes in two forms: concrete indicators of achievement and
qualitative indicators of process effectiveness.

A. Achievement

With respect to effectiveness, the most important indicator is
the percentage of students completing all assignments. To un-
derstand how the approach has impacted this metric, one needs
to understand how the course evolved. This evolution is sum-
marized in Table I.

The initial seven-assignment design of the course was es-
tablished in fall 2001. At that time, oral exams were admin-
istered by the instructor to validate the last two programming
assignments (6 and 7). No TA support was available, and an
off-the-shelf textbook was required, primarily for reference pur-
poses. About ten hours of multimedia content, developed by the
instructor, were provided to students on a CD.

In spring 2002, a third oral exam (validating assignment 3)
was added, and some TA support was provided for the second
half of the course. Online discussion groups for each assign-
ment, modeled after vendor technical support forums, were also

GILL: LEARNING C++ “SUBMARINE STYLE”: A CASE STUDY 153

TABLE I
COURSE DESIGN AND PERFORMANCE SUMMARY

Note 1: Adjusted to make comparable to previous classes

introduced. In fall 2002, the instructor-developed textbook re-
placed the third-party textbook, and full TA support was pro-
vided. In spring 2003, Web-based lectures were made available,
and validation exams for nonprogramming assignments were
pilot-tested. In summer 2003, the course was offered over a
ten-week semester as opposed to a normal 16-week semester. In
fall 2003, an object-oriented programming (OOP) module was
added over the last four weeks of the course, and the final course
design was realized.

Course Results: As the course evolved to its “submarine-
style” design, a sharp increase in the percentage of students
completing the course with an A or B grade (the 2/3 program-
ming assignments row) occurred, followed by a leveling out as
the amount of course content was increased. The only excep-
tion to this pattern was during summer 2003, where the time
available for the course was substantially compressed. Because
validation exams—particularly oral exams on the last two as-
signments—ensured that consistent standards were maintained
from semester to semester, these increases in completion rates
represented genuine gains in student performance.

One side effect of enhanced completion rates was the
awarding of an unusually high number of “A” grades by
the spring of 2003 since completing all assignments virtu-
ally guaranteed an “A.” A natural concern resulting from
such a distribution is that some students might not be suffi-
ciently challenged. Educators have remarked that introductory
programming courses often have a bimodal (or barbell) dis-
tribution, with a mix of very strong and very weak students
[6]. Designing effective courses in the presence of such a
distribution is very challenging [7], with solutions ranging from

limiting access to the course to achieve greater uniformity [7],
to redesigning courses based around Bloom’s taxonomy of
learning [6], [8].

In order to address the barbell issue, the instructor added an
additional module to the course in fall 2003, a four-week intro-
duction to OOP, compressing the original content accordingly.
An additional assignment was added, and two of the original
nonprogramming assignments were combined into a single as-
signment. Under this redesign, the requirements for a “C” in the
course did not change significantly. To achieve an “A,” how-
ever, a student needed to complete the final OOP assignment
(or have nearly perfect scores on the preceding six structured
programming assignments). This change increased course con-
tent by nearly 30%.

These measures provide compelling evidence of increasing
student achievement as the course evolved. Such an increase
does not, however, prove that the “submarine-style” model
employed was necessarily the cause. As previously illustrated
in Table I, many changes were introduced concurrently as
the course design evolved. These changes make impossible
the isolation of the effects of individual design modifications
in a rigorous way. To address this issue, additional metrics
measuring student perceptions of the learning process were
gathered to assess the source of achievement changes.

B. Process Effectiveness

To assess the learning process, an end-of-semester survey
was administered in spring 2003, and at the end of subsequent
semesters. Students were offered extra credit for participating.
The instrument drew a substantial number of its questions from

154 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 1, FEBRUARY 2005

TABLE II
PROCESS-RELATED MEASURES FROM END-OF-SEMESTER SURVEYS

previously validated course surveys.2 Specific items were also
added to gauge student perceptions of a number of submarine-
inspired techniques, including the following:

• the course’s heavy focus on assignments;
• the reliability of oral examinations;
• the effectiveness of undergraduate teaching assistants;
• the degree to which peer collaboration was encouraged;
• the quality of course materials;
• the self-directed approach to the learning process.

These results are summarized in Table II. The responses con-
firmed that students were aware of key design elements. They
also suggest that, overall, students perceived these elements to
be supportive of their learning process.

The results of the survey appear to confirm a number of find-
ings in the existing literature. The effectiveness of undergrad-
uate TAs has been documented in many studies [9]–[12]. Studies

2See “Student Opinion Survey” (http://oerl.sri.com/instruments/cd/stud-
course/instr16.html accessed on 4/14/2003), “Computer Programming
Survey” (http://oerl.sri.com/instruments/cd/studcourse/instr11.html accessed
on 4/14/2003), and “Student Assessment of Learning Gains (SALG)”
(http://www.wcer.wisc.edu/salgains/instructor/ accessed on 4/14/2003). Copies
of the survey instrument used to measure the course may be obtained from the
author by email (ggill@coba.usf.edu).

have also identified benefits, from allowing students to proceed
at their own pace with assignment extensions readily given [7],
to providing alternative paths through a course to support diver-
sity of learning styles [13], [14] to emphasizing collaborative
work [1], [15], [16].

V. POTENTIAL CONCERNS

In considering the adoption of the submarine approach to
teaching C++, potential concerns need to be addressed. The first
is that submarine training has historically been limited to men.
Since some researchers have raised questions about teaching
programming to men and women using the same techniques
[17], adopting a strategy developed for training an exclusively
male population must be initiated cautiously.

The experience of the course presented offers some comfort
in this regard. Specifically, virtually no significant differences
in outcomes between men and women could be detected in the
survey data. For example, the survey data for all 2003 sections
contained roughly 112 usable responses (varying by question),
with a breakdown of 30% female and 70% male. Of 16 items
relating to time spent on various tasks, assignments, and types

GILL: LEARNING C++ “SUBMARINE STYLE”: A CASE STUDY 155

of courses, not a single significant difference between male
and female means was encountered. Of eight measures adapted
from the Computer Programming Survey, one mea-
sure was encountered, with women being more likely to agree
with the statement that “The assignments contributed to my
understanding of the course materials” (4.2 versus 3.7 on a
disagree–agree 1-to-5-point scale). Out of 16 satisfaction mea-
sures derived from the student opinion survey, one
measure was encountered, with women reporting a slightly
higher satisfaction with laboratory exercises (3.6 versus 3.1 on
a dissatisfaction–satisfaction 1-to-5-point scale). Finally, out
of 51 items derived from the Student Assessment of Learning
Gains instrument, one significant item was found, with women
reporting the assignment 4 debugging exercise to be more
helpful than men (4.2 versus 3.8 on an unhelpful–helpful
5-point scale). Even the observed differences can probably be
discounted; 75 items would be expected to yield about four
items with through pure random chance. Even the
number of women who went on to become TAs in 2002–2003
(three out of ten assistants) proved to be representative of the
course population as a whole.

Likely to be of greater concern is a second issue: Which
skills are actually being taught? Submarine training, particu-
larly nuclear training, has always emphasized comprehension
and adherence to procedures versus creativity. Given the dan-
gers inherent in running an underwater nuclear reactor, such an
emphasis makes considerable sense—on a submarine! Could
exclusive reliance on oral examinations to validate assignments
lead to the same outcome in students? If so, the result might be
students who are good at interpreting existing code but are less
creative in their problem-solving abilities.

There is some evidence that such concern is warranted. Stu-
dents completing the “submarine-style” introductory course ap-
peared to do neither better nor worse in subsequent OOP courses
(taught in a more conventional manner, with emphasis on lec-
tures and tests) than students who took a conventional intro-
ductory course. For example, a regression analysis of perfor-
mance on subsequent OOP courses found a high significance
() for the first course grade in predicting the second
course grade, but whether or not the course was taught “subma-
rine-style” proved to be insignificant. Unfortunately, too many
issues are in play here to make a rigorous determination one
way or the other. For example, the non-“submarine style” in-
structor was highly talented and had many years of experience.
In addition, pedagogy sensitivity may exist, with some students
thriving under one approach but not the other—independent of
their programming skills. Furthermore, activities, such as in-
structors’ curving the grade, could easily cause grades in sub-
sequent courses to be dubious measures of “success” in the first
course.

Because entry-level MIS graduates are more likely to be re-
sponsible for maintaining existing code than writing brand new
code, the seriousness of such an outcome may be limited as far
as MIS employers are concerned. For computer science pro-
grams, however, the nature of the skills being developed by the
pedagogy is an issue that warrants careful future study.

VI. CONCLUSION

In teaching a difficult subject—such as computer program-
ming—pedagogies that have proven successful from other
fields can be worth considering. In identifying such potential
teaching techniques, one must ensure that the objectives of
the approach being used as a model are consistent with those
of the material being taught. Because the objectives of nu-
clear submarine training—communicating a complex body of
material with a particular emphasis on understanding existing
systems, achieving high quality, promoting teamwork, and
adhering to specifications—are similar to those desired of MIS
undergraduates, testing how submarine training techniques
could be applied in the MIS classroom was reasonable.

The results of the case study presented in this paper are
promising. Use of the techniques has coincided with a major
increase in the amount of material that has been covered.
Student survey results support the conclusion that the increase
in content can, to a large extent, be attributed to the adoption
of the “submarine-style” pedagogy. The reader is cautioned,
however, not to view the techniques described as a panacea
for all the challenges of a teaching programming. Whether or
not these techniques would prove effective in teaching creative
programming and design skills has yet to be tested, and sub-
marine training objectives (which place little or no emphasis
on achieving these outcomes) provide us with little basis for
assuming that the techniques will be effective. Thus, careful
pilot testing is warranted before applying the pedagogy outside
of introductory MIS programming courses. Given the benefits
observed in the case study presented here, however, the cost
and effort associated with initiating such pilot testing are likely
to be justified.

REFERENCES

[1] J. C. Prey, “Cooperative learning in an undergraduate computer science
curriculum,” in Proc. IEEE Frontiers in Educ. Conf., 1995, 3c3, pp.
11–14.

[2] A. MacCormack and K. Herman, “Microsoft .Net,” Harvard Business
School Publishing, Case 9-602-086, 2002.

[3] E. Roberts, “Computing education and the information technology
workforce,” SIGCSE Bull., vol. 32, no. 2, pp. 83–90, Jun. 2000.

[4] A. B. Tucker et al., “Strategic directions in computer science education,”
ACM Comput. Surv., vol. 28, no. 4, pp. 836–845, Dec. 1996.

[5] T. G. Gill, Introduction to Programming Using Visual C++
.NET. Hoboken, NJ: Wiley, 2005.

[6] R. Lister and J. Leaney, “Introductory programming, criterion-refer-
encing, and bloom,” in Proc. SIGCSE 2003, Reno, NV, Feb. 19–23,
2003, pp. 143–147.

[7] E. Roberts, “Strategies for encouraging individual achievement in intro-
ductory computer science courses,” in Proc. SIGCSE 2000, Austin, TX,
Mar. 2000, pp. 295–299.

[8] M. V. Doran and D. D. Langan, “A cognitive-based approach to intro-
ductory computer science courses: Lessons learned,” in Proc. SIGCSE
1995, Nashville, TN, Mar. 1995, pp. 218–222.

[9] C. A. Twigg, “Improving quality and reducing cost: Designs for effective
learning,” Change, pp. 23–39, Jul./Aug. 2003.

[10] S. Reges, “Using undergraduate teaching assistants at a state university,”
in Proc. SIGCSE 2003, Reno, Nevada, Feb. 19–23, 2003, pp. 103–107.

[11] C. E. Wills and D. Finkel, “Experience with peer learning in an intro-
ductory computer science course,” Comput. Sci. Educ., vol. 5, no. 2, pp.
165–187, 1995.

[12] E. Roberts, J. Lilly, and B. Rollins, “Using undergraduates as teaching
assistants in introductory programming courses: An update on the stan-
ford experience,” in Proc. SIGCSE 1995, Nashville, TN, Mar. 1995, pp.
48–52.

156 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 1, FEBRUARY 2005

[13] L. Thomas, M. Ratcliffe, J. Woodbury, and E. Jarman, “Learning styles
and performance in the introductory programming sequence,” in Proc.
SIGCSE 2002, Covington, KY, Feb. 27–Mar. 3, 2002, pp. 33–37.

[14] A. Hirumi, “Student-Centered, technology-rich learning environments
(SCenTRLE): Operationalizing constructivist approaches to teaching
and learning,” J. Technol. Teacher Educ., vol. 10, no. 4, pp. 497–537,
2002.

[15] N. Herrmann, J. Popyack, B. Char, P. Zoski, C. Cera, R. Lass, and A.
Nanjappa, “Redesigning introductory computer programming using
multi-level onlie modules for a mixed audience,” in Proc. SIGCSE
2003, Reno, NV, Feb. 19–23, 2003, pp. 196–200.

[16] C. E. Wills and D. Finkel, “Study of a group project model in computer
science,” in Proc. IEEE 1997 Frontiers in Educ. Conf., 1997, T3C, pp.
299–303.

[17] P. De Palma, “Why women avoid computer science,” Commun. ACM,
vol. 44, no. 6, pp. 27–29, Jun. 2001.

T. Grandon Gill received the A.B. degree in applied mathematics (cum laude)
from Harvard College, Cambridge, MA, in 1975 and the M.B.A. degree (with
high distinction) and the D.B.A. degree in the management of information sys-
tems from Harvard Business School, Harvard University, Cambridge, MA, in
1982 and 1991, respectively.

He is currently an Associate Professor with the University of South Florida,
Tampa. His teaching areas have included programming, management of infor-
mation systems, database design, the Internet, and case method research. His
research interests include expert systems, organizational learning, and manage-
ment of information systems (MIS) education and include numerous publica-
tions in prestigious journals, such as the MIS Quarterly. He has also done exten-
sive programming, in a variety of languages, and has designed and programmed
a number of commercial software applications.

Dr. Gill has received numerous teaching awards, including the Florida At-
lantic University award for excellence in undergraduate teaching.

	toc
	Learning C++ Submarine Style: A Case Study
	T. Grandon Gill
	I. I NTRODUCTION
	II. N UCLEAR S UBMARINE T RAINING
	III. C OURSE D ESIGN
	IV. C OURSE R ESULTS
	A. Achievement

	TABLE I C OURSE D ESIGN AND P ERFORMANCE S UMMARY
	Course Results: As the course evolved to its submarine-style des
	B. Process Effectiveness

	TABLE II P ROCESS -R ELATED M EASURES F ROM E ND - OF -S EMESTER
	V. P OTENTIAL C ONCERNS
	VI. C ONCLUSION
	J. C. Prey, Cooperative learning in an undergraduate computer sc
	A. MacCormack and K. Herman, Microsoft .Net, Harvard Business Sc
	E. Roberts, Computing education and the information technology w
	A. B. Tucker et al., Strategic directions in computer science ed
	T. G. Gill, Introduction to Programming Using Visual C++ .NET .
	R. Lister and J. Leaney, Introductory programming, criterion-ref
	E. Roberts, Strategies for encouraging individual achievement in
	M. V. Doran and D. D. Langan, A cognitive-based approach to intr
	C. A. Twigg, Improving quality and reducing cost: Designs for ef
	S. Reges, Using undergraduate teaching assistants at a state uni
	C. E. Wills and D. Finkel, Experience with peer learning in an i
	E. Roberts, J. Lilly, and B. Rollins, Using undergraduates as te
	L. Thomas, M. Ratcliffe, J. Woodbury, and E. Jarman, Learning st
	A. Hirumi, Student-Centered, technology-rich learning environmen
	N. Herrmann, J. Popyack, B. Char, P. Zoski, C. Cera, R. Lass, an
	C. E. Wills and D. Finkel, Study of a group project model in com
	P. De Palma, Why women avoid computer science, Commun. ACM, vol

