Decision Sciences Journal of Innovative Education
Volume 3 Number 1

Spring 2005

Printed in the U.S.A.

TEACHING BRIEF

Engaging Introductory Programming
Students with CGI

T. Grandon Gill

Information and Decision Sciences Department, College of Business Administration,
University of South Florida, 4202 East Fowler Avenue, CIS1040, Tampa, FL 33620-7800,
e-mail: ggill@coba.usf.edu

INTRODUCTION

The technical component of Management Information Systems (MIS) programs
can be challenging to design. Unlike computer science students, MIS majors tend
to take relatively few technical courses, yet are expected to graduate with a broad
array of computer skills. To meet these expectations, foundation courses are often
designed to serve multiple objectives. For example, as a first course in an upper
division undergraduate MIS major, the author teaches an introductory programming
course in the C++ language. Beyond teaching the basic elements of programming
and computer architecture, that course is expected to explore data representation
(a foundation for data communications), the file-handling concepts (the building
block of databases), and basic application construction (a core concept of systems
analysis and design).

To meet these multiple objectives, programming courses need to limit the
number of language features introduced. A particularly common target for simpli-
fication is input and output (I/O). The development of a graphic user interface is
quite complex and text-based (console) I/O is sufficient to teach most programming
concepts. Unfortunately, limiting I/O in this fashion also leads to programs that
appear dated by today’s standards. In consequence, students can easily develop
the perception that programming is a wholly uninteresting activity, unworthy of
serious consideration as a career.

To counteract such a perception, exercises need to be provided that engage
students in the programming process and demonstrate its potential. In this vein, one
class of exercises that we have developed allows the student to write programs that
interact with a Web browser. Such exercises can be easy to construct and utilize
the same console I/O that students have been taught. In addition, these exercises
introduce key data communication concepts (e.g., HTML) and demonstrate client-
server design. In this brief, an example of such an exercise is described.

COMMON GATEWAY INTERFACE

The technique used for the exercise is based on the common gateway interface
(CGI), the simplest approach available for creating programs that respond to a

177

178 Teaching Brief

Figure 1: CGI interaction.

Web Browser Web Server CGIl Program

web page

Web form. A typical CGI process is illustrated in Figure 1. It begins when the user
presses the “Submit” button on a form in the browser. The data from that form
are then submitted to the host’s Web server (sent as a long text string of name-
value pairs). The Web server, in turn, repackages the data string and sends it into
the CGI program. In the most common method (the POST method), the data are
sent by using standard input. The CGI program then runs and sends its output—
normally text generated in HTML format written to standard output—back to the
server. The server then sends the Web page back to the user’s browser, where it is
displayed.

Common gateway interface programs are particularly attractive, from a teach-
ing perspective, for three reasons: (1) all their I/O is done using standard library
functions, meaning the student can write them just as if they were plain console
programs, (2) they are surprisingly easy to build, and (3) they illustrate how stan-
dard C++ can be relevant to practical programming problems. Furthermore, even
though CGI does not represent the “state of the art” in Web design—other ap-
proaches such as Active Server Pages (ASP) and J2EE are most commonly used
for commercial Web applications—they do serve to illustrate all the activities that
must take place for a distributed Web application to function. Indeed, the CGI
approach is the building block of more advanced Web environments in much the
same way that programming languages are the building blocks of richer business
environments, such as database management systems.

Unfortunately, CGI applications also have a serious drawback: they only
work in the presence of a Web server. For this reason, they have traditionally not
been suitable for student exercises, both as a result of the complex setup required
for a server and the risk that incorrect server settings would leave the user (or
institutional) system vulnerable to hackers.

ServerSim

The ServerSim tool was developed specifically to eliminate the need for a Web
server when CGI applications are used as class assignments. The tool is a Windows
C++ application built around a stripped down, but fully functional MS Internet
Explorer browser. ServerSim differs from a regular browser in two specific ways:

¢ [t allows the user to specify specific Web addresses (URLs) as “local.”
Whenever the user navigates to one of those addresses, the call is in-
tercepted and handled locally (an example of the settings window is
presented in Figure 2, which would cause any URL at the site “www.
ctoolspaper.com/cgibin” to be handled in the associated local folder).

Gill 179

Figure 2: ServerSim configuration settings.

Enter simulated server folder information @

Warking Folder: “ Browss: II'

Cancel

| Site Name Site Folder | Local Folder
| wvaw cloolspaper.com fegibin C:\Documents\Research\CCourse’, Browse

W oo~ e -

.LI

Figure 3: Form used for CGI exercise.

Do a mortgage amortization calculation

Enter the values to be calculated:

Loan amount 300000

Annual interest rate: |6.00]

Mumber of years: (15

| Click to Submit _E

¢ When auser submits a form to one of those “local” sites, the program acts as
a simulated Web server (e.g., setting environmental variables, redirecting
the post string to the CGI program’s standard input, then reading the CGI
program’s standard output).

Using ServerSim not only eliminates the problem of students trying to set up
their own servers, it also eliminates the risk of security problems associated with
novice server setups.

THE MORTGAGE AMORTIZATION EXERCISES

The CGI assignments that we use involve programming an application that gener-
ates a mortgage amortization table. Specifically, the student must write code that
responds to data sent from the form shown in Figure 3 to generate the HTML page
shown in Figure 4.

180

Figure 4: Output of student CGI program.

Teaching Brief

Summary statistics:

Loan Amount: $300000.00

Years: 15

Interest rate: 6.000%

Monthly payment: $2531.57

Amortization table:

Year Interest Remaining Printiple:

Wl =)o B W R e

k| ek | i | g | gk
La | | DD = | D

15

This page has been accessed 4 times

$17653.84 $287274.99
$16868.99 $273765.14
$16035.73 $259422.02
$15151.08 $244194.25
§14211.87 $228027.27
§13214.72 $210863.14
$12156.08 $192640.37
$11032.14 $173293.66

$9838.87
$8572.01
$7227.02
$5799.06
$4283.03
§2673.50
$964 69

$152753.68
$130546.85
$107795.01
$83215.22
$57119.40
$29414.05
$£-0.10

As preparation for the assignment, students are provided with a
75-minute Web-based video lecture that overviews the exercise. Topics covered

include:

a quick overview of HTML describing basic formatting and tables,

an introduction to HTML forms,

a summary of the CGI process, illustrated with a sample application that
takes the variables from any form and creates a Web page containing a
variable-value table, and

an overview of ServerSim.

Gill 181

In addition to the lecture, students are given source code for the sample application
and two multimedia files—one detailing the application they are to build and the
other detailing the setup of ServerSim.

The assignment itself is broken into two parts. The first part requires the stu-
dent to implement the project using C++ without classes—effectively the same as
C. The second part—which is extra credit—requires recreating the same assign-
ment using C++ classes. During Fall 2003, roughly 50% of all students completed
the first part of the assignment, which was necessary in order to get an A in the
course. Before any credit was given for the assignment, each student also needed to
pass an oral exam with the instructor or a teaching assistant. These exams entailed
the student explaining his or her code and answering questions about that code.

OUTCOMES

There are a number of indications suggesting that the CGI programming exercise
is effective and well received. At the end of each semester in 2003, the instructor
gathered data from students using a voluntary 300+ item instrument that students
could submit for extra credit. The first part of the assignment—the only part for
which a reasonable sample size is available—was rated relatively higher (62%
rated it in the top half of the assignments, 30% in the top two assignments). Of
greater interest were correlations found with items adapted from the Student As-
sessment of Learning Gains instrument (details on the instrument can be found
at http://www.wcer.wisc.edu/salgains/instructor/SALGains.asp, last accessed on
April 10, 2004). Of all seven assignments, the perception that the CGI assignment
was helpful was most closely correlated with perceived gains in “confidence in
your ability to work in the field” and “enthusiasm for the subject”—suggesting
that students who grasped the assignment found it to be engaging.

GENERALIZABILITY

The use of CGI as a programming demonstration is not limited to C/C++. Any
language capable of console I/O could be used to perform the same exercise, at
least in theory. The main modification required would be a rewrite of the two simple
functions that we provide to students in the chosen target language. These functions
serve to: (1) set up the CGI process and (2) break up the post string into name-
value pairs. The exercise would be particularly well suited for implementation in
Visual Basic.NET, which now provides good support for console programming and
which offers excellent built-in string manipulation functions. It could also be readily
adapted to earlier text-oriented languages, such as MS-BASIC, Pascal, COBOL,
or FORTRAN. ServerSim should work with any of these languages unchanged.

SAMPLE MATERIALS

ServerSim and sample source code may be obtained from the author on request,
along with access to the current course Web site. The tool and instructions used in
the exercises are also available as part of the Instructor’s Manual CD for the text-
book “Introduction to Programming Using Visual C4++.NET” by T. Grandon Gill
(New York: Wiley, 2005), which includes completed projects and instructional
video clips as well. [Received: April 2004. Accepted: June 2004.]

